Modifier and Type | Method and Description |
---|---|
abstract Example |
ClusterExample.getExample() |
Modifier and Type | Method and Description |
---|---|
Example |
SimpleDataset.getExample(int exampleIndex)
Return the example stored in the
exampleIndex position |
Example |
SimpleDataset.getNextExample() |
Example |
Dataset.getNextExample()
Returns the next
n Example s stored in the Dataset or a fewer number
if n examples are not available. |
Example |
SimpleDataset.getRandExample() |
Example |
Dataset.getRandExample() |
Example |
DatasetReader.readNextExample()
Returns the next example
|
Modifier and Type | Method and Description |
---|---|
List<Example> |
SimpleDataset.getExamples() |
List<Example> |
Dataset.getExamples()
Returns an array containing all the stored examples
|
List<Example> |
SimpleDataset.getNextExamples(int n) |
List<Example> |
Dataset.getNextExamples(int n)
Returns the next
Example stored in the Dataset |
List<Example> |
SimpleDataset.getRandExamples(int k) |
List<Example> |
Dataset.getRandExamples(int k) |
Modifier and Type | Method and Description |
---|---|
void |
SimpleDataset.addExample(Example example)
Add an example to the dataset
|
void |
Dataset.addExample(Example e) |
void |
DatasetWriter.writeNextExample(Example e) |
Modifier and Type | Class and Description |
---|---|
class |
ExamplePair
It is the instance of an example pair, i.e.
|
class |
SimpleExample
An
Example composed by a set of Representation s. |
Modifier and Type | Method and Description |
---|---|
Example |
Example.clone() |
Example |
ExamplePair.getLeftExample()
Returns the left example in the pair
|
Example |
ExamplePair.getRightExample()
Returns the right example in the pair
|
static Example |
ExampleFactory.parseExample(String exampleDescription) |
Constructor and Description |
---|
ExamplePair(Example left,
Example right) |
Modifier and Type | Method and Description |
---|---|
static SparseVector |
VectorConcatenationManipulator.concatenateVectors(Example example,
List<String> representationsToConcatenated,
List<Float> weights)
Returns a SparseVector corresponding to the concatenation of the vectors in
example identified with representationsToBeMerged
Each vector is scaled with respect to the corresponding scaling factor in weights |
static void |
VectorConcatenationManipulator.concatenateVectors(Example example,
List<String> representationsToBeConcatenated,
List<Float> weights,
String combinationName)
Add a new representation identified with
combinationName |
void |
LexicalStructureElementManipulator.manipulate(Example example) |
void |
VectorConcatenationManipulator.manipulate(Example example) |
void |
PairSimilarityExtractor.manipulate(Example example) |
void |
NormalizationManipolator.manipulate(Example example) |
void |
Manipulator.manipulate(Example example) |
Modifier and Type | Method and Description |
---|---|
void |
CompositionalNodeSimilarityDilation.manipulate(Example example) |
Modifier and Type | Method and Description |
---|---|
void |
CompositionalNodeSimilarityProduct.manipulate(Example example) |
Modifier and Type | Method and Description |
---|---|
void |
CompositionalNodeSimilaritySum.manipulate(Example example) |
Modifier and Type | Method and Description |
---|---|
float |
Kernel.innerProduct(Example exA,
Example exB)
Returns the kernel similarity between the given examples.
|
protected abstract float |
Kernel.kernelComputation(Example exA,
Example exB)
Returns the kernel similarity between the given examples.
|
protected float |
DirectKernel.kernelComputation(Example exA,
Example exB) |
float |
Kernel.squaredNorm(Example example)
Returns the squared norm of the given example in the RKHS defined by this kernel
|
float |
Kernel.squaredNormOfTheDifference(Example exA,
Example exB)
Returns the squared norm of the difference between the given examples in the RKHS.
|
Modifier and Type | Method and Description |
---|---|
Float |
KernelCache.getKernelValue(Example exA,
Example exB)
Retrieves in the cache the kernel operation between two examples
|
Float |
SquaredNormCache.getSquaredNorm(Example example)
Returns a previously stored norm of a given example
|
Float |
FixIndexSquaredNormCache.getSquaredNorm(Example example) |
Float |
DynamicIndexSquaredNormCache.getSquaredNorm(Example example) |
protected Float |
StripeKernelCache.getStoredKernelValue(Example exA,
Example exB) |
protected abstract Float |
KernelCache.getStoredKernelValue(Example exA,
Example exB)
Retrieves in the cache the kernel operation between two examples
|
protected Float |
FixIndexKernelCache.getStoredKernelValue(Example exA,
Example exB) |
protected Float |
DynamicIndexKernelCache.getStoredKernelValue(Example exA,
Example exB) |
void |
StripeKernelCache.setKernelValue(Example exA,
Example exB,
float value) |
abstract void |
KernelCache.setKernelValue(Example exA,
Example exB,
float value)
Stores a kernel computation in cache
|
void |
FixIndexKernelCache.setKernelValue(Example exA,
Example exB,
float value) |
void |
DynamicIndexKernelCache.setKernelValue(Example exA,
Example exB,
float value) |
void |
SquaredNormCache.setSquaredNormValue(Example example,
float squaredNorm)
Stores a squared norm in the cache
|
void |
FixIndexSquaredNormCache.setSquaredNormValue(Example example,
float squaredNorm) |
void |
DynamicIndexSquaredNormCache.setSquaredNormValue(Example example,
float squaredNorm) |
Modifier and Type | Method and Description |
---|---|
protected float |
KernelOverPairs.kernelComputation(Example exA,
Example exB) |
abstract float |
KernelOverPairs.kernelComputationOverPairs(Example exA1,
Example exA2,
Example exB1,
Example exB2)
Returns the kernel computation
|
float |
PreferenceKernel.kernelComputationOverPairs(Example exA1,
Example exA2,
Example exB1,
Example exB2) |
Modifier and Type | Method and Description |
---|---|
protected float |
RbfKernel.kernelComputation(Example exA,
Example exB) |
protected float |
PolynomialKernel.kernelComputation(Example exA,
Example exB) |
protected float |
NormalizationKernel.kernelComputation(Example exA,
Example exB) |
protected float |
LinearKernelCombination.kernelComputation(Example exA,
Example exB) |
float |
NormalizationKernel.squaredNorm(Example example) |
Modifier and Type | Method and Description |
---|---|
protected float |
PassiveAggressive.computeWeight(Example example,
float lossValue,
float exampleSquaredNorm,
float aggressiveness) |
Prediction |
OnlineLearningAlgorithm.learn(Example example)
Applies the learning process on a single example, updating its current model
|
Modifier and Type | Method and Description |
---|---|
Prediction |
BudgetedLearningAlgorithm.learn(Example example) |
protected Prediction |
Stoptron.predictAndLearnWithAvailableBudget(Example example) |
protected Prediction |
RandomizedBudgetPerceptron.predictAndLearnWithAvailableBudget(Example example) |
protected abstract Prediction |
BudgetedLearningAlgorithm.predictAndLearnWithAvailableBudget(Example example) |
protected Prediction |
Stoptron.predictAndLearnWithFullBudget(Example example) |
protected Prediction |
RandomizedBudgetPerceptron.predictAndLearnWithFullBudget(Example example) |
protected abstract Prediction |
BudgetedLearningAlgorithm.predictAndLearnWithFullBudget(Example example)
Learns from a single example applying a specific policy that must be adopted when the budget is reached
|
Modifier and Type | Field and Description |
---|---|
protected Example[] |
LibSvmSolver.examples
The input examples
|
Modifier and Type | Method and Description |
---|---|
protected float |
LibSvmSolver.kernel(Example exA,
Example exB)
This function embeds the call to the kernel function
|
protected void |
LibSvmSolver.swap(Example[] array,
int i,
int j) |
Modifier and Type | Method and Description |
---|---|
BinaryMarginClassifierOutput |
PassiveAggressiveClassification.learn(Example example) |
BinaryMarginClassifierOutput |
BudgetedPassiveAggressiveClassification.learn(Example example) |
protected BinaryMarginClassifierOutput |
BudgetedPassiveAggressiveClassification.predictAndLearnWithAvailableBudget(Example example) |
protected BinaryMarginClassifierOutput |
BudgetedPassiveAggressiveClassification.predictAndLearnWithFullBudget(Example example) |
Modifier and Type | Method and Description |
---|---|
BinaryMarginClassifierOutput |
Perceptron.learn(Example example) |
Modifier and Type | Method and Description |
---|---|
Example |
KernelBasedKMeansExample.getExample() |
Modifier and Type | Method and Description |
---|---|
float |
KernelBasedKMeansEngine.calculateDistance(Example example,
Cluster cluster)
Estimate the distance of an example from the centroid
|
float |
KernelBasedKMeansEngine.evaluateKernel(Example e1,
Example e2) |
void |
KernelBasedKMeansExample.setExample(Example example) |
Constructor and Description |
---|
KernelBasedKMeansExample(Example e,
float dist) |
Modifier and Type | Method and Description |
---|---|
UnivariateRegressionOutput |
PassiveAggressiveRegression.learn(Example example) |
Modifier and Type | Method and Description |
---|---|
Prediction |
PredictionFunction.predict(Example example) |
Modifier and Type | Method and Description |
---|---|
ClassificationOutput |
Classifier.predict(Example example) |
BinaryMarginClassifierOutput |
BinaryLinearClassifier.predict(Example example) |
BinaryMarginClassifierOutput |
BinaryKernelMachineClassifier.predict(Example example)
Classifies an example applying the following formula:
y(x) = \sum_{i \in SV}\alpha_i k(x_i, x) + b
|
abstract BinaryMarginClassifierOutput |
BinaryClassifier.predict(Example example) |
Modifier and Type | Method and Description |
---|---|
OneVsOneClassificationOutput |
OneVsOneClassifier.predict(Example example) |
OneVsAllClassificationOutput |
OneVsAllClassifier.predict(Example example) |
MultiLabelClassificationOutput |
MultiLabelClassifier.predict(Example example) |
Modifier and Type | Method and Description |
---|---|
Example |
SupportVector.getInstance() |
Modifier and Type | Method and Description |
---|---|
abstract void |
BinaryModel.addExample(float weight,
Example example)
Adds an example to the model with a given weight.
|
void |
BinaryLinearModel.addExample(float weight,
Example example) |
void |
BinaryKernelMachineModel.addExample(float weight,
Example example) |
abstract float |
BinaryModel.getSquaredNorm(Example example)
Computes the squared norm of a given example according to the space in which the model
is operating
|
float |
BinaryLinearModel.getSquaredNorm(Example example) |
float |
BinaryKernelMachineModel.getSquaredNorm(Example example) |
SupportVector |
BinaryKernelMachineModel.getSupportVector(Example instance)
Returns the support vector associated to a given instance, null the instance
is not a support vector in this model
|
Integer |
BinaryKernelMachineModel.getSupportVectorIndex(Example instance)
Returns the index of the vector associated to a given instance, null the instance
is not a support vector in this model
|
boolean |
KernelMachineModel.isSupportVector(Example instance)
Returns whether
instance is a support vector in this model |
boolean |
BinaryKernelMachineModel.isSupportVector(Example instance) |
void |
SupportVector.setInstance(Example instance) |
void |
BinaryKernelMachineModel.substituteSupportVector(int index,
Example newInstance,
float newWeight) |
Constructor and Description |
---|
SupportVector(float weight,
Example instance) |
Modifier and Type | Method and Description |
---|---|
abstract UnivariateRegressionOutput |
UnivariateRegressionFunction.predict(Example example) |
UnivariateRegressionOutput |
UnivariateLinearRegressionFunction.predict(Example example) |
UnivariateRegressionOutput |
UnivariateKernelMachineRegressionFunction.predict(Example example) |
RegressionOutput |
RegressionFunction.predict(Example example) |
Modifier and Type | Method and Description |
---|---|
void |
MulticlassClassificationEvaluator.addCount(Example test,
Prediction prediction) |
abstract void |
Evaluator.addCount(Example test,
Prediction predicted)
This method should be implemented in the subclasses to update counters useful to compute the performance measure
|
void |
BinaryClassificationEvaluator.addCount(Example test,
Prediction prediction) |
Copyright © 2015 Semantic Analytics Group @ Uniroma2. All rights reserved.