Modifier and Type | Method and Description |
---|---|
List<Label> |
SimpleDataset.getClassificationLabels() |
List<Label> |
Dataset.getClassificationLabels()
Returns all the classification labels in the dataset.
|
List<Label> |
SimpleDataset.getRegressionProperties() |
List<Label> |
Dataset.getRegressionProperties()
Returns all the regression properties in the dataset.
|
Modifier and Type | Method and Description |
---|---|
int |
SimpleDataset.getNumberOfNegativeExamples(Label positiveClass) |
int |
Dataset.getNumberOfNegativeExamples(Label positiveClass)
Returns the number of negative
Example s of a given class |
int |
SimpleDataset.getNumberOfPositiveExamples(Label positiveClass) |
int |
Dataset.getNumberOfPositiveExamples(Label positiveClass)
Returns the number of positive
Example s of a given class |
Modifier and Type | Method and Description |
---|---|
static Dataset |
SimpleDataset.extractExamplesOfClasses(Dataset dataset,
List<Label> labels)
This method extracts examples of given
labels from
dataset |
Modifier and Type | Method and Description |
---|---|
Label[] |
Example.getLabels()
Returns the classification classificationLabels of this example
|
Modifier and Type | Method and Description |
---|---|
HashSet<Label> |
Example.getClassificationLabels() |
Modifier and Type | Method and Description |
---|---|
void |
Example.addLabel(Label label)
Adds a label to the example
|
Float |
Example.getRegressionValue(Label property)
Returns the numeric value associated to a label
|
boolean |
Example.isExampleOf(Label label)
Asserts whether this is a positive example for the input label or not
|
void |
Example.setLabels(Label[] labels)
Sets the example classificationLabels
|
Modifier and Type | Method and Description |
---|---|
void |
Example.setClassificationLabels(HashSet<Label> labels) |
Constructor and Description |
---|
SimpleExample(Label[] labels,
HashMap<String,Representation> representations)
Initializes a SimpleExample with the input representations and labels
|
Modifier and Type | Class and Description |
---|---|
class |
NumericLabel
It value consisting of a real value.
|
class |
StringLabel
It is a label consisting of an String value.
|
Modifier and Type | Method and Description |
---|---|
Label |
NumericLabel.getProperty()
Returns the property
|
static Label |
LabelFactory.parseLabel(String labelDescription)
Initializes and returns the label described in
labelDescription |
Modifier and Type | Method and Description |
---|---|
void |
NumericLabel.setProperty(Label property) |
Constructor and Description |
---|
NumericLabel(Label property,
float labelValue)
Initializes a NumericLabel whose value is
labelValue and
whose name is name |
Modifier and Type | Field and Description |
---|---|
protected Label |
PassiveAggressive.label |
Modifier and Type | Method and Description |
---|---|
Label |
BinaryLearningAlgorithm.getLabel() |
Label |
PassiveAggressive.getLabel() |
Modifier and Type | Method and Description |
---|---|
List<Label> |
LearningAlgorithm.getLabels()
Returns the labels representing the concept to be learned.
|
List<Label> |
BinaryLearningAlgorithm.getLabels() |
List<Label> |
PassiveAggressive.getLabels() |
List<Label> |
MultiEpochLearning.getLabels() |
Modifier and Type | Method and Description |
---|---|
void |
BinaryLearningAlgorithm.setLabel(Label label) |
void |
PassiveAggressive.setLabel(Label label) |
Modifier and Type | Method and Description |
---|---|
void |
LearningAlgorithm.setLabels(List<Label> labels)
Sets the labels representing the concept to be learned.
|
void |
BinaryLearningAlgorithm.setLabels(List<Label> labels) |
void |
PassiveAggressive.setLabels(List<Label> labels) |
void |
MultiEpochLearning.setLabels(List<Label> labels) |
Constructor and Description |
---|
MultiEpochLearning(int epochs,
LearningAlgorithm baseAlgorithm,
List<Label> labels) |
Modifier and Type | Field and Description |
---|---|
protected Label |
BudgetedLearningAlgorithm.label |
Modifier and Type | Method and Description |
---|---|
Label |
BudgetedLearningAlgorithm.getLabel() |
Modifier and Type | Method and Description |
---|---|
List<Label> |
BudgetedLearningAlgorithm.getLabels() |
Modifier and Type | Method and Description |
---|---|
void |
BudgetedLearningAlgorithm.setLabel(Label label) |
Modifier and Type | Method and Description |
---|---|
void |
BudgetedLearningAlgorithm.setLabels(List<Label> labels) |
Constructor and Description |
---|
RandomizedBudgetPerceptron(int budget,
OnlineLearningAlgorithm baseAlgorithm,
long seed,
Label label) |
Stoptron(int budget,
OnlineLearningAlgorithm baseAlgorithm,
Label label) |
Modifier and Type | Method and Description |
---|---|
Label |
LibLinearLearningAlgorithm.getLabel() |
Modifier and Type | Method and Description |
---|---|
List<Label> |
LibLinearLearningAlgorithm.getLabels() |
Modifier and Type | Method and Description |
---|---|
void |
LibLinearLearningAlgorithm.setLabel(Label label) |
Modifier and Type | Method and Description |
---|---|
void |
LibLinearLearningAlgorithm.setLabels(List<Label> labels) |
Constructor and Description |
---|
LibLinearLearningAlgorithm(Label label,
double cp,
double cn,
boolean fairness,
String representationName) |
LibLinearLearningAlgorithm(Label label,
double cp,
double cn,
String representationName) |
Constructor and Description |
---|
Problem(Dataset dataset,
String reprentationName,
Label label,
Problem.LibLinearSolverType solverType) |
Constructor and Description |
---|
BinaryCSvmClassification(Kernel kernel,
Label label,
float cp,
float cn) |
BinaryCSvmClassification(Kernel kernel,
Label label,
float cp,
float cn,
boolean useFairness) |
BinaryNuSvmClassification(Kernel kernel,
Label label,
float nu) |
OneClassSvmClassification(Kernel kernel,
Label label,
float nu) |
Modifier and Type | Field and Description |
---|---|
protected Label |
LibSvmSolver.label
The label to be learned by the classifier
|
Modifier and Type | Method and Description |
---|---|
Label |
LibSvmSolver.getLabel() |
Modifier and Type | Method and Description |
---|---|
List<Label> |
LibSvmSolver.getLabels() |
Modifier and Type | Method and Description |
---|---|
void |
LibSvmSolver.setLabel(Label label) |
Modifier and Type | Method and Description |
---|---|
void |
LibSvmSolver.setLabels(List<Label> labels) |
Modifier and Type | Method and Description |
---|---|
List<Label> |
OneVsOneLearning.getLabels()
Returns the labels to be learned applying a one-vs-one strategy
|
List<Label> |
OneVsAllLearning.getLabels()
Returns the labels to be learned applying a one-vs-all strategy
|
List<Label> |
MultiLabelClassificationLearning.getLabels()
Returns the labels to be learned
|
Modifier and Type | Method and Description |
---|---|
void |
OneVsOneLearning.setLabels(List<Label> labels)
Set the labels associated to this multi-classifier.
|
void |
OneVsAllLearning.setLabels(List<Label> labels)
Set the labels associated to this multi-classifier.
|
void |
MultiLabelClassificationLearning.setLabels(List<Label> labels)
Set the labels associated to this multi-classifier.
|
Constructor and Description |
---|
BudgetedPassiveAggressiveClassification(int budget,
Kernel kernel,
float c,
boolean fairness,
BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy,
Label label) |
BudgetedPassiveAggressiveClassification(int budget,
Kernel kernel,
float cp,
float cn,
BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy,
Label label) |
KernelizedPassiveAggressiveClassification(float cp,
float cn,
PassiveAggressiveClassification.Loss loss,
Kernel kernel,
Label label) |
LinearPassiveAggressiveClassification(float cp,
float cn,
PassiveAggressiveClassification.Loss loss,
PassiveAggressive.Policy policy,
String representation,
Label label) |
Modifier and Type | Method and Description |
---|---|
Label |
PegasosLearningAlgorithm.getLabel() |
Modifier and Type | Method and Description |
---|---|
List<Label> |
PegasosLearningAlgorithm.getLabels() |
Modifier and Type | Method and Description |
---|---|
void |
PegasosLearningAlgorithm.setLabel(Label label) |
Modifier and Type | Method and Description |
---|---|
void |
PegasosLearningAlgorithm.setLabels(List<Label> labels) |
Constructor and Description |
---|
PegasosLearningAlgorithm(int k,
float lambda,
int T,
String Representation,
Label label) |
Modifier and Type | Field and Description |
---|---|
protected Label |
Perceptron.label |
Modifier and Type | Method and Description |
---|---|
Label |
Perceptron.getLabel() |
Modifier and Type | Method and Description |
---|---|
List<Label> |
Perceptron.getLabels() |
Modifier and Type | Method and Description |
---|---|
void |
Perceptron.setLabel(Label label) |
Modifier and Type | Method and Description |
---|---|
void |
Perceptron.setLabels(List<Label> labels) |
Constructor and Description |
---|
KernelizedPerceptron(float alpha,
float margin,
boolean unbiased,
Kernel kernel,
Label label) |
LinearPerceptron(float alpha,
float margin,
boolean unbiased,
String representation,
Label label) |
Modifier and Type | Method and Description |
---|---|
Label |
LibLinearRegression.getLabel() |
Modifier and Type | Method and Description |
---|---|
List<Label> |
LibLinearRegression.getLabels() |
Modifier and Type | Method and Description |
---|---|
void |
LibLinearRegression.setLabel(Label label) |
Modifier and Type | Method and Description |
---|---|
void |
LibLinearRegression.setLabels(List<Label> labels) |
Constructor and Description |
---|
LibLinearRegression(Label label,
double c,
double p,
String representationName) |
Modifier and Type | Method and Description |
---|---|
void |
EpsilonSvmRegression.setLabels(Label... labels) |
Constructor and Description |
---|
EpsilonSvmRegression(Kernel kernel,
Label label,
float c,
float pReg) |
Constructor and Description |
---|
KernelizedPassiveAggressiveRegression(float aggressiveness,
float epsilon,
PassiveAggressive.Policy policy,
Kernel kernel,
Label label) |
LinearPassiveAggressiveRegression(float aggressiveness,
float epsilon,
PassiveAggressive.Policy policy,
String representation,
Label label) |
Modifier and Type | Method and Description |
---|---|
List<Label> |
PredictionFunction.getLabels()
Returns the labels representing the concept to be predicted.
|
Modifier and Type | Method and Description |
---|---|
Float |
Prediction.getScore(Label label)
Return the prediction score associated to a given label
|
Modifier and Type | Method and Description |
---|---|
void |
PredictionFunction.setLabels(List<Label> labels)
Sets the labels representing the concept to be predicted.
|
Modifier and Type | Field and Description |
---|---|
protected Label |
BinaryClassifier.positiveClass |
Modifier and Type | Method and Description |
---|---|
Label |
BinaryClassifier.getLabel() |
Modifier and Type | Method and Description |
---|---|
List<Label> |
ClassificationOutput.getAllClasses()
Returns all the classes involved in the classification process (both predicted and not)
|
List<Label> |
BinaryMarginClassifierOutput.getAllClasses() |
List<Label> |
BinaryClassifier.getLabels() |
List<Label> |
ClassificationOutput.getPredictedClasses()
Returns all the classes that the classifier has predicted
|
List<Label> |
BinaryMarginClassifierOutput.getPredictedClasses() |
Modifier and Type | Method and Description |
---|---|
Float |
BinaryMarginClassifierOutput.getScore(Label label) |
boolean |
ClassificationOutput.isClassPredicted(Label label)
Returns a boolean identifying the predicted membership to a specified class
|
boolean |
BinaryMarginClassifierOutput.isClassPredicted(Label label) |
void |
BinaryClassifier.setLabel(Label label) |
Modifier and Type | Method and Description |
---|---|
void |
BinaryClassifier.setLabels(List<Label> labels) |
Constructor and Description |
---|
BinaryKernelMachineClassifier(BinaryKernelMachineModel model,
Label label) |
BinaryMarginClassifierOutput(Label positiveClass,
float prediction) |
Modifier and Type | Method and Description |
---|---|
Label[] |
OneVsOneClassifier.getNegativeLabelsForClassifier()
Return the negative labels associated to each classifier
|
Modifier and Type | Method and Description |
---|---|
List<Label> |
OneVsOneClassificationOutput.getAllClasses() |
List<Label> |
OneVsAllClassificationOutput.getAllClasses() |
List<Label> |
MultiLabelClassificationOutput.getAllClasses() |
HashMap<Label,Integer> |
OneVsOneClassificationOutput.getCounter() |
List<Label> |
OneVsOneClassifier.getLabels() |
List<Label> |
OneVsAllClassifier.getLabels() |
List<Label> |
MultiLabelClassifier.getLabels() |
HashMap<Label,Float> |
OneVsOneClassificationOutput.getMaxMarginForLabel() |
List<Label> |
OneVsOneClassificationOutput.getPredictedClasses() |
List<Label> |
OneVsAllClassificationOutput.getPredictedClasses() |
List<Label> |
MultiLabelClassificationOutput.getPredictedClasses() |
Modifier and Type | Method and Description |
---|---|
void |
OneVsAllClassificationOutput.addBinaryPrediction(Label label,
float prediction)
Sets the score associated to a given class
|
void |
MultiLabelClassificationOutput.addBinaryPrediction(Label label,
float prediction)
Sets the score associated to a given class
|
void |
OneVsOneClassificationOutput.addVotedPrediction(Label l,
float score) |
Float |
OneVsOneClassificationOutput.getScore(Label label) |
Float |
OneVsAllClassificationOutput.getScore(Label label) |
Float |
MultiLabelClassificationOutput.getScore(Label label) |
boolean |
OneVsOneClassificationOutput.isClassPredicted(Label label) |
boolean |
OneVsAllClassificationOutput.isClassPredicted(Label label) |
boolean |
MultiLabelClassificationOutput.isClassPredicted(Label label) |
void |
OneVsOneClassifier.setNegativeLabelsForClassifier(Label[] negativeLabelsForClassifier)
Set the negative label classifier array
|
Modifier and Type | Method and Description |
---|---|
void |
OneVsOneClassifier.setLabels(List<Label> labels) |
void |
OneVsAllClassifier.setLabels(List<Label> labels) |
void |
MultiLabelClassifier.setLabels(List<Label> labels) |
Modifier and Type | Field and Description |
---|---|
protected List<Label> |
MulticlassModel.labels |
Modifier and Type | Method and Description |
---|---|
List<Label> |
MulticlassModel.getLabels() |
Modifier and Type | Method and Description |
---|---|
void |
MulticlassModel.setLabels(List<Label> labels) |
Modifier and Type | Field and Description |
---|---|
protected Label |
UnivariateRegressionFunction.property |
Modifier and Type | Method and Description |
---|---|
List<Label> |
UnivariateRegressionOutput.getAllProperties() |
List<Label> |
RegressionOutput.getAllProperties()
Returns all the properties on which the regressor has to provide predictions
|
List<Label> |
UnivariateRegressionFunction.getLabels() |
Modifier and Type | Method and Description |
---|---|
Float |
UnivariateRegressionOutput.getScore(Label label) |
Modifier and Type | Method and Description |
---|---|
void |
UnivariateRegressionFunction.setLabels(List<Label> labels) |
Constructor and Description |
---|
UnivariateRegressionOutput(Label property,
float predictedValue) |
Modifier and Type | Method and Description |
---|---|
gnu.trove.map.hash.TObjectFloatHashMap<Label> |
MulticlassClassificationEvaluator.getF1s()
Return the F1 map
|
gnu.trove.map.hash.TObjectFloatHashMap<Label> |
MulticlassClassificationEvaluator.getPrecisions()
Return the precision map
|
gnu.trove.map.hash.TObjectFloatHashMap<Label> |
MulticlassClassificationEvaluator.getRecalls()
Return the recall map
|
Modifier and Type | Method and Description |
---|---|
float |
MulticlassClassificationEvaluator.getF1For(Label l)
Return the f1 for the specified label
|
float |
MulticlassClassificationEvaluator.getPrecisionFor(Label l)
Return the precision for the specified label
|
float |
MulticlassClassificationEvaluator.getRecallFor(Label l)
Return the recall for the specified label
|
void |
MulticlassClassificationEvaluator.printCounters(Label l)
Print the counters of the specified Label l.
|
Modifier and Type | Method and Description |
---|---|
float |
MulticlassClassificationEvaluator.getMeanF1For(ArrayList<Label> ls)
Return the mean of the F1 scores considering the specified labels
|
Constructor and Description |
---|
BinaryClassificationEvaluator(Label positiveClass) |
Constructor and Description |
---|
MulticlassClassificationEvaluator(List<Label> labels)
Initialize a new F1Evaluator that will work on the specified classes
|
Copyright © 2015 Semantic Analytics Group @ Uniroma2. All rights reserved.