Class | Description |
---|---|
KernelMultiplication |
Multiplication of Kernels
Given the kernels \(K_1 \ldots K_n\), the combination formula is: \(\prod_{i}K_i\) |
LinearKernelCombination |
Weighted Linear Combination of Kernels
Given the kernels \(K_1 \ldots K_n\), with weights \(c_1 \ldots c_n\), the combination formula is: \(\sum_{i}c_iK_i\) |
NormalizationKernel |
Normalization of a generic kernel K
Normalization formula: \(K(x,y) = \frac{K(x,y)}{\sqrt{(K(x,x) \cdot K(y,y))}}\)
|
PolynomialKernel | |
RbfKernel |
Radial Basis Function Kernel.
|
Copyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.