public interface Dataset
Example
sModifier and Type | Method and Description |
---|---|
void |
addExample(Example e) |
List<Label> |
getClassificationLabels()
Returns all the classification labels in the dataset.
|
List<Example> |
getExamples()
Returns an array containing all the stored examples
|
Example |
getNextExample()
Returns the next
n Example s stored in the Dataset or a fewer number
if n examples are not available. |
List<Example> |
getNextExamples(int n)
Returns the next
Example stored in the Dataset |
int |
getNumberOfExamples()
Returns the number of
Example s in the dataset |
int |
getNumberOfNegativeExamples(Label positiveClass)
Returns the number of negative
Example s of a given class |
int |
getNumberOfPositiveExamples(Label positiveClass)
Returns the number of positive
Example s of a given class |
Example |
getRandExample() |
List<Example> |
getRandExamples(int k) |
List<Label> |
getRegressionProperties()
Returns all the regression properties in the dataset.
|
Dataset |
getShuffledDataset() |
Vector |
getZeroVector(String representationIdentifier)
Returns a zero vector compliant with the representation identifier by
representationIdentifier containing all zeros |
boolean |
hasNextExample()
Returns a boolean declaring whether there are other Examples in the dataset
|
void |
manipulate(Manipulator... manipulators)
Manipulates all the examples in the dataset accordingly to the strategies defined by the given
manipulators . |
void |
reset()
Reset the reading pointer
|
void |
setSeed(long seed)
Sets the seed of the random generator used to shuffling examples and getting random examples
|
void addExample(Example e)
Example getNextExample()
n Example
s stored in the Dataset or a fewer number
if n
examples are not available.n Example
sList<Example> getNextExamples(int n)
Example
stored in the Datasetn
- the number of examples to be returnedExample
boolean hasNextExample()
true
if and only if there is at least another Example in the datasetvoid reset()
int getNumberOfPositiveExamples(Label positiveClass)
Example
s of a given classpositiveClass
- the class whose number of positive Example
s are requiredExample
s of positiveClassint getNumberOfNegativeExamples(Label positiveClass)
Example
s of a given classpositiveClass
- the class whose number of negative Example
s are requiredExample
s of positiveClassint getNumberOfExamples()
Example
s in the datasetExample
s in the datasetList<Label> getClassificationLabels()
List<Label> getRegressionProperties()
List<Example> getExamples()
Vector getZeroVector(String representationIdentifier)
representationIdentifier
containing all zeros
NOTE: it assumes that there is at least an example in the dataset and that the representation is directly available on the example using the getRepresentation method (i.e., the example is not an ExamplePair storing the representation in its left or right element)
representationIdentifier
- the identifier of the representationrepresentationIdentifier
containing all zerosExample getRandExample()
List<Example> getRandExamples(int k)
k
- the number of examples to be returnedk
random examplesDataset getShuffledDataset()
void setSeed(long seed)
seed
- the seed of the random generatorvoid manipulate(Manipulator... manipulators)
manipulators
.
manipulator
in the arraymanipulators
- the manipulators that must be applied to all the examples in the datasetCopyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.