Modifier and Type | Class and Description |
---|---|
class |
SequenceDataset
A dataset made of
SequenceExample s |
class |
SimpleDataset
A SimpleDataset that represent a whole dataset in memory.
|
Modifier and Type | Method and Description |
---|---|
static Dataset |
SimpleDataset.extractExamplesOfClasses(Dataset dataset,
List<Label> labels)
This method extracts examples of given
labels from
dataset |
Dataset |
Dataset.getShuffledDataset() |
Modifier and Type | Method and Description |
---|---|
void |
SimpleDataset.addExamples(Dataset datasetToBeAdded)
Add all the examples contained in
datasetToBeAdded |
static Dataset |
SimpleDataset.extractExamplesOfClasses(Dataset dataset,
List<Label> labels)
This method extracts examples of given
labels from
dataset |
Modifier and Type | Method and Description |
---|---|
List<Example> |
RandomExampleSelector.select(Dataset dataset) |
List<Example> |
FirstExamplesSelector.select(Dataset dataset) |
List<Example> |
ExampleSelector.select(Dataset dataset)
This function allows to select a subset of
Example s from the
input Dataset |
Constructor and Description |
---|
StripeKernelCache(Dataset dataset) |
StripeKernelCache(Dataset dataset,
int maxNumberOfRows) |
Modifier and Type | Method and Description |
---|---|
void |
PassiveAggressive.learn(Dataset dataset) |
void |
MultiEpochLearning.learn(Dataset dataset) |
void |
LearningAlgorithm.learn(Dataset dataset)
It starts the training process exploiting the provided
dataset |
Modifier and Type | Method and Description |
---|---|
void |
BudgetedLearningAlgorithm.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
void |
DCDLearningAlgorithm.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
void |
SequenceClassificationLearningAlgorithm.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
void |
LibLinearLearningAlgorithm.learn(Dataset dataset) |
Constructor and Description |
---|
Problem(Dataset dataset,
String reprentationName,
Label label,
Problem.LibLinearSolverType solverType) |
Modifier and Type | Method and Description |
---|---|
void |
OneClassSvmClassification.learn(Dataset trainingSet) |
void |
BinaryNuSvmClassification.learn(Dataset trainingSet) |
void |
BinaryCSvmClassification.learn(Dataset trainingSet) |
Modifier and Type | Method and Description |
---|---|
protected float[] |
LibCSvmSolver.getCSvmAlpha(Dataset trainingSet)
Get the initial weight for the future Support Vectors
|
SvmSolution |
LibSvmSolver.solve(int l_,
Dataset dataset,
float[] p_,
int[] y_,
float[] initial_alpha)
It solves the SMO algorithm in [CC Chang & CJ Lin, 2011]
min 0.5(\alpha^T Q \alpha) + p^T \alpha
y^T \alpha = \delta
y_i = +1 or -1 0 <= alpha_i <= Cp for y_i = 1 0 <= alpha_i <= Cn for y_i = -1 Given: Q, p, y, Cp, Cn, and an initial feasible point \alpha l is the size of vectors and matrices eps is the stopping tolerance solution will be put in \alpha, objective value will be put in obj |
Modifier and Type | Method and Description |
---|---|
void |
OneVsOneLearning.learn(Dataset dataset)
This method will cause the meta-learning algorithm to learn
N*(N-1)/2 classifiers, where N is the number of classes in the dataset.
|
void |
OneVsAllLearning.learn(Dataset dataset)
This method will cause the meta-learning algorithm to learn
N classifiers, where N is the number of classes in the dataset.
|
void |
MultiLabelClassificationLearning.learn(Dataset dataset)
This method will cause the meta-learning algorithm to learn
N classifiers, where N is the number of classes in the dataset.
|
Modifier and Type | Method and Description |
---|---|
void |
PassiveAggressiveClassification.learn(Dataset dataset) |
void |
BudgetedPassiveAggressiveClassification.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
void |
PegasosLearningAlgorithm.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
void |
Perceptron.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
void |
SoftConfidenceWeightedClassification.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
List<Cluster> |
ClusteringAlgorithm.cluster(Dataset dataset)
It starts the clustering process exploiting the provided
dataset |
List<Cluster> |
ClusteringAlgorithm.cluster(Dataset dataset,
ExampleSelector seedSelector)
It starts the clustering process exploiting the provided
dataset |
Modifier and Type | Method and Description |
---|---|
ClusterList |
KernelBasedKMeansEngine.cluster(Dataset dataset) |
ClusterList |
KernelBasedKMeansEngine.cluster(Dataset dataset,
ExampleSelector seedSelector) |
Modifier and Type | Method and Description |
---|---|
ClusterList |
LinearKMeansEngine.cluster(Dataset dataset) |
ClusterList |
LinearKMeansEngine.cluster(Dataset dataset,
ExampleSelector seedSelector) |
Modifier and Type | Method and Description |
---|---|
void |
LibLinearRegression.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
void |
EpsilonSvmRegression.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
void |
PassiveAggressiveRegression.learn(Dataset dataset) |
Modifier and Type | Method and Description |
---|---|
SimpleDataset |
LinearizationFunction.getLinearizedDataset(Dataset dataset,
String representationName)
This method linearizes all the examples in the input
dataset
, generating a corresponding linearized dataset. |
Modifier and Type | Method and Description |
---|---|
SimpleDataset |
NystromMethodEnsemble.getLinearizedDataset(Dataset dataset,
String representationName) |
SimpleDataset |
NystromMethod.getLinearizedDataset(Dataset dataset,
String representationName) |
Modifier and Type | Method and Description |
---|---|
static List<Prediction> |
ExperimentUtils.test(PredictionFunction predictionFunction,
Evaluator evaluator,
Dataset testset)
Evaluates a prediction function over a testset
|
Copyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.