public class KernelBasedKMeansEngine extends Object implements ClusteringAlgorithm
Constructor and Description |
---|
KernelBasedKMeansEngine() |
KernelBasedKMeansEngine(Kernel kernel,
int k,
int maxIterations) |
Modifier and Type | Method and Description |
---|---|
float |
calculateDistance(Example example,
Cluster cluster)
Estimate the distance of an example from the centroid
|
void |
checkConsistency(int K,
int inputSize) |
ClusterList |
cluster(Dataset dataset)
It starts the clustering process exploiting the provided
dataset |
ClusterList |
cluster(Dataset dataset,
ExampleSelector seedSelector)
It starts the clustering process exploiting the provided
dataset |
float |
evaluateKernel(Example e1,
Example e2) |
int |
getK() |
Kernel |
getKernel() |
int |
getMaxIterations() |
void |
setK(int k) |
void |
setKernel(Kernel kernel) |
void |
setMaxIterations(int maxIterations) |
public KernelBasedKMeansEngine()
public KernelBasedKMeansEngine(Kernel kernel, int k, int maxIterations)
kernel
- The kernel functionk
- The number of expected clustersmaxIterations
- The maximum number of iterationspublic float calculateDistance(Example example, Cluster cluster)
example
- An examplecluster
- A clusterpublic void checkConsistency(int K, int inputSize) throws Exception
Exception
public ClusterList cluster(Dataset dataset)
ClusteringAlgorithm
dataset
cluster
in interface ClusteringAlgorithm
public ClusterList cluster(Dataset dataset, ExampleSelector seedSelector)
ClusteringAlgorithm
dataset
cluster
in interface ClusteringAlgorithm
seedSelector
- the seed selectorpublic int getK()
public Kernel getKernel()
public int getMaxIterations()
public void setK(int k)
public void setKernel(Kernel kernel)
public void setMaxIterations(int maxIterations)
Copyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.