public abstract class LibCSvmSolver extends LibSvmSolver
Further details can be found in:
[CC Chang & CJ Lin, 2011] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011.
and
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
LibSvmSolver.Pair
active_set, active_size, alpha, alpha_status, cn, cp, doShrinking, eps, examples, G, G_bar, kernel, l, label, logIteration, p, QD, shrinkingIteration, TAU, unshrink, y
Constructor and Description |
---|
LibCSvmSolver() |
LibCSvmSolver(Kernel kernel,
float cp,
float cn) |
Modifier and Type | Method and Description |
---|---|
protected boolean |
be_shrunk(int i,
float Gmax1,
float Gmax2) |
protected float |
calculate_rho() |
protected void |
do_shrinking()
Apply the shrinking step
|
protected float[] |
getCSvmAlpha(Dataset trainingSet)
Get the initial weight for the future Support Vectors
|
protected int |
select_working_set(LibSvmSolver.Pair pair)
Select the working set in each iteration.
|
get_QD, get_Qij, getCn, getCp, getEps, getKernel, getLabel, getLabels, info, is_free, is_lower_bound, is_upper_bound, kernel, reconstruct_gradient, setC, setCn, setCp, setEps, setLabel, setLabels, solve, swap_index, swap, swap, swap, swap
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
duplicate, getPredictionFunction, learn, reset
public LibCSvmSolver(Kernel kernel, float cp, float cn)
kernel
- The kernel functioncp
- The regularization parameter for positive examplescn
- The regularization parameter for negative examplespublic LibCSvmSolver()
protected int select_working_set(LibSvmSolver.Pair pair)
LibSvmSolver
select_working_set
in class LibSvmSolver
pair
- The Q_ij to be evaluatedprotected boolean be_shrunk(int i, float Gmax1, float Gmax2)
protected float calculate_rho()
calculate_rho
in class LibSvmSolver
protected void do_shrinking()
LibSvmSolver
do_shrinking
in class LibSvmSolver
protected float[] getCSvmAlpha(Dataset trainingSet)
trainingSet
- the training setCopyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.