public class BudgetedPassiveAggressiveClassification extends BudgetedLearningAlgorithm
| Modifier and Type | Class and Description |
|---|---|
static class |
BudgetedPassiveAggressiveClassification.DeletingPolicy
It is the updating policy applied when the budget is full.
|
budget, label| Constructor and Description |
|---|
BudgetedPassiveAggressiveClassification() |
BudgetedPassiveAggressiveClassification(int budget,
Kernel kernel,
float c,
boolean fairness,
BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy,
Label label) |
BudgetedPassiveAggressiveClassification(int budget,
Kernel kernel,
float cp,
float cn,
BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy,
Label label) |
| Modifier and Type | Method and Description |
|---|---|
LearningAlgorithm |
duplicate()
Creates a new instance of the LearningAlgorithm initialized with the same parameters
of the learningAlgorithm to be duplicated.
|
float |
getCn() |
float |
getCp() |
BudgetedPassiveAggressiveClassification.DeletingPolicy |
getDeletingPolicy() |
Kernel |
getKernel()
Returns the kernel exploited by this learner
|
BinaryKernelMachineClassifier |
getPredictionFunction()
Returns the predictionFunction learned during the training process
|
boolean |
isFairness() |
void |
learn(Dataset dataset)
It starts the training process exploiting the provided
dataset |
BinaryMarginClassifierOutput |
learn(Example example)
Applies the learning process on a single example, updating its current model
|
protected BinaryMarginClassifierOutput |
predictAndLearnWithAvailableBudget(Example example) |
protected BinaryMarginClassifierOutput |
predictAndLearnWithFullBudget(Example example)
Learns from a single example applying a specific policy that must be adopted when the budget is reached
|
void |
reset()
Resets all the learning process, returning to the default state.
|
void |
setC(float c) |
void |
setCn(float cn) |
void |
setCp(float cp) |
void |
setDeletingPolicy(BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy) |
void |
setFairness(boolean fairness) |
void |
setKernel(Kernel kernel)
Sets the kernel this
|
public BudgetedPassiveAggressiveClassification()
public BudgetedPassiveAggressiveClassification(int budget,
Kernel kernel,
float cp,
float cn,
BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy,
Label label)
public BudgetedPassiveAggressiveClassification(int budget,
Kernel kernel,
float c,
boolean fairness,
BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy,
Label label)
public boolean isFairness()
public void setFairness(boolean fairness)
fairness - the fairness to setpublic float getCp()
public void setCp(float cp)
cp - the aggressiveness parameter for positive examplespublic float getCn()
public void setCn(float cn)
cn - the aggressiveness parameter for negative examplespublic void setC(float c)
c - the aggressiveness parameterpublic BudgetedPassiveAggressiveClassification.DeletingPolicy getDeletingPolicy()
public void setDeletingPolicy(BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy)
deletingPolicy - the deletingPolicy to setpublic LearningAlgorithm duplicate()
LearningAlgorithmpublic void reset()
LearningAlgorithmpublic BinaryKernelMachineClassifier getPredictionFunction()
LearningAlgorithmpublic Kernel getKernel()
KernelMethodpublic void setKernel(Kernel kernel)
KernelMethodkernel - the kernel to setprotected BinaryMarginClassifierOutput predictAndLearnWithAvailableBudget(Example example)
predictAndLearnWithAvailableBudget in class BudgetedLearningAlgorithmprotected BinaryMarginClassifierOutput predictAndLearnWithFullBudget(Example example)
BudgetedLearningAlgorithmpredictAndLearnWithFullBudget in class BudgetedLearningAlgorithmexample - the example to be exploited in the learning processpublic void learn(Dataset dataset)
LearningAlgorithmdatasetlearn in interface LearningAlgorithmlearn in class BudgetedLearningAlgorithmdataset - the training datapublic BinaryMarginClassifierOutput learn(Example example)
OnlineLearningAlgorithmlearn in interface OnlineLearningAlgorithmlearn in class BudgetedLearningAlgorithmexample - the instance to be exploited in the learning processexample before the updating stepCopyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.