public class PegasosLearningAlgorithm extends Object implements LinearMethod, ClassificationLearningAlgorithm, BinaryLearningAlgorithm
[SingerICML2007] Y. Singer and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In Proceeding of ICML 2007.
| Constructor and Description |
|---|
PegasosLearningAlgorithm() |
PegasosLearningAlgorithm(int k,
float lambda,
int T,
String Representation,
Label label) |
| Modifier and Type | Method and Description |
|---|---|
PegasosLearningAlgorithm |
duplicate()
Creates a new instance of the LearningAlgorithm initialized with the same parameters
of the learningAlgorithm to be duplicated.
|
int |
getIterations()
Returns the number of iterations
|
int |
getK()
Returns the number of examples k that Pegasos exploits in its
mini-batch learning approach
|
Label |
getLabel() |
List<Label> |
getLabels()
Returns the labels representing the concept to be learned.
|
float |
getLambda()
Returns the regularization coefficient
|
BinaryLinearClassifier |
getPredictionFunction()
Returns the classifier learned during the training process
|
String |
getRepresentation()
Returns the representation this learning algorithm exploits
|
void |
learn(Dataset dataset)
It starts the training process exploiting the provided
dataset |
void |
reset()
Resets all the learning process, returning to the default state.
|
void |
setIterations(int T)
Sets the number of iterations
|
void |
setK(int k)
Sets the number of examples k that Pegasos exploits in its
mini-batch learning approach
|
void |
setLabel(Label label) |
void |
setLabels(List<Label> labels)
Sets the labels representing the concept to be learned.
|
void |
setLambda(float lambda)
Sets the regularization coefficient
|
void |
setRepresentation(String representation)
Sets the representation this learning algorithm will exploit
|
public int getK()
public void setK(int k)
k - the k to setpublic int getIterations()
public void setIterations(int T)
T - the number of iterations to setpublic float getLambda()
public void setLambda(float lambda)
lambda - the lambda to setpublic String getRepresentation()
LinearMethodgetRepresentation in interface LinearMethodpublic void setRepresentation(String representation)
LinearMethodsetRepresentation in interface LinearMethodrepresentation - the representation to setpublic void learn(Dataset dataset)
LearningAlgorithmdatasetlearn in interface LearningAlgorithmdataset - the training datapublic PegasosLearningAlgorithm duplicate()
LearningAlgorithmduplicate in interface LearningAlgorithmpublic void reset()
LearningAlgorithmreset in interface LearningAlgorithmpublic BinaryLinearClassifier getPredictionFunction()
ClassificationLearningAlgorithmgetPredictionFunction in interface ClassificationLearningAlgorithmgetPredictionFunction in interface LearningAlgorithmpublic void setLabels(List<Label> labels)
LearningAlgorithmsetLabels in interface BinaryLearningAlgorithmsetLabels in interface LearningAlgorithmlabels - the labels representing the concept to be learnedpublic List<Label> getLabels()
LearningAlgorithmgetLabels in interface BinaryLearningAlgorithmgetLabels in interface LearningAlgorithmpublic Label getLabel()
getLabel in interface BinaryLearningAlgorithmpublic void setLabel(Label label)
setLabel in interface BinaryLearningAlgorithmCopyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.