Modifier and Type | Class and Description |
---|---|
class |
SequenceDataset
A dataset made of
SequenceExample s |
Modifier and Type | Method and Description |
---|---|
SimpleDataset |
SimpleDataset.getShuffledDataset() |
SimpleDataset[] |
SimpleDataset.nFolding(int n)
Returns
n datasets. |
SimpleDataset[] |
SimpleDataset.nFoldingClassDistributionInvariant(int n)
Returns
n datasets. |
SimpleDataset[] |
SimpleDataset.split(float percentage)
Returns two datasets created by splitting this dataset accordingly to
percentage . |
SimpleDataset[] |
SimpleDataset.splitClassDistributionInvariant(float percentage)
Returns two datasets created by splitting this dataset accordingly to
percentage . |
Modifier and Type | Method and Description |
---|---|
static int |
TreePruningDemo.computeTotalNumberOfNodes(SimpleDataset dataset,
String representation) |
Modifier and Type | Method and Description |
---|---|
static Kernel |
QuestionClassification.getQCKernelFunction(SimpleDataset trainingSet,
SimpleDataset testSet,
String kernelId)
Get one of the kernel functions used in the Question Classification
examples.
|
Modifier and Type | Method and Description |
---|---|
protected void |
RCV1BinaryTextCategorization.foldLearn(float c,
int nfold,
SimpleDataset allData) |
Modifier and Type | Method and Description |
---|---|
SimpleDataset |
LinearizationFunction.getLinearizedDataset(Dataset dataset,
String representationName)
This method linearizes all the examples in the input
dataset
, generating a corresponding linearized dataset. |
Modifier and Type | Method and Description |
---|---|
SimpleDataset |
NystromMethodEnsemble.getLinearizedDataset(Dataset dataset,
String representationName) |
SimpleDataset |
NystromMethod.getLinearizedDataset(Dataset dataset,
String representationName) |
Modifier and Type | Method and Description |
---|---|
static <T extends Evaluator> |
ExperimentUtils.nFoldCrossValidation(int nFold,
LearningAlgorithm algorithm,
SimpleDataset allData,
T evaluator)
Performs a n-fold cross validation
|
Copyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.