Modifier and Type | Method and Description |
---|---|
Vector |
SimpleDataset.getZeroVector(String representationIdentifier) |
Vector |
Dataset.getZeroVector(String representationIdentifier)
Returns a zero vector compliant with the representation identifier by
representationIdentifier containing all zeros |
Modifier and Type | Method and Description |
---|---|
void |
StandardizationManipulator.standardize(Vector vector)
It standardizes the feature values of
vector . |
Modifier and Type | Method and Description |
---|---|
Vector |
Vector.copyVector()
Returns a copy of this vector.
|
Vector |
Vector.getZeroVector()
Returns a vector whose values are all 0.
|
Modifier and Type | Method and Description |
---|---|
void |
Vector.add(float coeff,
float vectorCoeff,
Vector vector)
Add a
vector multiplied by vectorCoeff to this
vector multiplied by |
void |
Vector.add(float coeff,
Vector vector)
Add a
vector multiplied by coeff to this vector |
void |
Vector.add(Vector vector)
Add a
vector to this vector |
float |
Vector.euclideanDistance(Vector vector)
Returns the euclidean distance between this vector and
vector |
float |
Vector.innerProduct(Vector vector)
Returns the dot product between this vector and
vector |
void |
Vector.pointWiseProduct(Vector vector)
Compute the point-wise product of this vector with the one in
vector . |
Modifier and Type | Method and Description |
---|---|
protected Vector |
VectorBasedStructureElementSimilarity.getCorrespondingVector(StructureElement element)
Returns the vector associated to
element . |
Modifier and Type | Method and Description |
---|---|
protected float |
VectorBasedStructureElementSimilarity.getSimilarity(Vector vector1,
Vector vector2)
Returns the similarity between
vector1 and vector2
computed using the kernel function |
Modifier and Type | Method and Description |
---|---|
abstract Vector |
CompositionalNodeSimilarity.getCompositionalInformationFor(LexicalStructureElement head,
LexicalStructureElement modifier)
This method takes in input two LexicalStructureElement representing a
head and a modifier.
|
Modifier and Type | Method and Description |
---|---|
Vector |
CompositionalNodeSimilarityDilation.getCompositionalInformationFor(LexicalStructureElement head,
LexicalStructureElement modifier)
This method takes in input two LexicalStructureElement representing a
head and a modifier.
|
Modifier and Type | Method and Description |
---|---|
Vector |
CompositionalNodeSimilarityProduct.getCompositionalInformationFor(LexicalStructureElement head,
LexicalStructureElement modifier)
This method takes in input two LexicalStructureElement representing a
head and a modifier.
|
Modifier and Type | Method and Description |
---|---|
Vector |
CompositionalNodeSimilaritySum.getCompositionalInformationFor(LexicalStructureElement head,
LexicalStructureElement modifier)
This method takes in input two LexicalStructureElement representing a
head and a modifier.
|
Modifier and Type | Class and Description |
---|---|
class |
DenseVector
Dense Feature Vector.
|
class |
SparseVector
Sparse Feature Vector.
|
Modifier and Type | Method and Description |
---|---|
void |
SparseVector.add(float coeff,
float vectorCoeff,
Vector vector) |
void |
DenseVector.add(float coeff,
float vectorCoeff,
Vector vector) |
void |
SparseVector.add(float coeff,
Vector vector) |
void |
DenseVector.add(float coeff,
Vector vector) |
void |
SparseVector.add(Vector vector) |
void |
DenseVector.add(Vector vector) |
float |
SparseVector.euclideanDistance(Vector vector) |
float |
DenseVector.euclideanDistance(Vector vector) |
float |
SparseVector.innerProduct(Vector vector) |
float |
DenseVector.innerProduct(Vector vector) |
void |
SparseVector.merge(Vector vector,
float coefficient,
String newDimensionPrefix)
Merge this vector with
vector (it is like a vector
concatenation) If V1 is the space where this vector lies and V2 is the
space where vector lies, then the resulting vector lies in
V1xV2 |
void |
SparseVector.pointWiseProduct(Vector vector) |
void |
DenseVector.pointWiseProduct(Vector vector) |
Modifier and Type | Method and Description |
---|---|
Vector |
VectorOperationException.getFirst() |
Vector |
VectorOperationException.getSecond() |
Modifier and Type | Method and Description |
---|---|
void |
VectorOperationException.setFirst(Vector first) |
void |
VectorOperationException.setSecond(Vector second) |
Constructor and Description |
---|
VectorOperationException(String message,
Vector first,
Vector second) |
Modifier and Type | Method and Description |
---|---|
float |
LinearKernel.kernelComputation(Vector repA,
Vector repB) |
Modifier and Type | Method and Description |
---|---|
Vector |
Problem.getW(double[] w) |
Modifier and Type | Method and Description |
---|---|
void |
Problem.initializeExamples(ArrayList<Vector> vectorlist) |
Modifier and Type | Method and Description |
---|---|
Vector |
LinearKMeansCluster.getCentroid() |
Modifier and Type | Method and Description |
---|---|
void |
LinearKMeansCluster.setCentroid(Vector centroid) |
Modifier and Type | Method and Description |
---|---|
Vector |
LinearizationFunction.getLinearRepresentation(Example example)
Given an input
Example , this method generates a linear
Representation> , i.e. |
Modifier and Type | Method and Description |
---|---|
Vector |
NystromMethodEnsemble.getLinearRepresentation(Example example) |
Modifier and Type | Method and Description |
---|---|
Vector |
BinaryLinearModel.getHyperplane() |
Modifier and Type | Method and Description |
---|---|
void |
BinaryLinearModel.setHyperplane(Vector hyperplane) |
Modifier and Type | Method and Description |
---|---|
Vector |
WordspaceI.getVector(String word)
Returns the vector associated to the given word
|
Vector |
Wordspace.getVector(String word) |
Vector |
WordspaceI.getZeroVector()
Returns the zero vector in the wordspace, i.e, a zero vector having the worspace dimensionality
|
Vector |
Wordspace.getZeroVector() |
Modifier and Type | Method and Description |
---|---|
void |
WordspaceI.addWordVector(String word,
Vector vector)
Stores the vector associated to a word.
|
void |
Wordspace.addWordVector(String word,
Vector vector) |
Copyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.