Package | Description |
---|---|
it.uniroma2.sag.kelp.kernel.pairs | |
it.uniroma2.sag.kelp.kernel.standard |
Modifier and Type | Class and Description |
---|---|
class |
BestPairwiseAlignmentKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = softmax(BK(x_1, y_1) \cdot BK(x_2, y_2) , BK(x_1, y_2) \cdot BK(x_2, y_1))\) |
class |
KernelOnPairs
It is a kernel operating on ExamplePairs applying a simpler kernel to the pair elements
|
class |
PairwiseProductKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) \cdot BK(x_2, y_2) + BK(x_1, y_2) \cdot BK(x_2, y_1)\) where BK is another kernel the kernel on pairs relies on. |
class |
PairwiseSumKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2) + BK(x_1, y_2) + BK(x_2, y_1)\) where BK is another kernel the kernel on pairs relies on. |
class |
PreferenceKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2) - BK(x_1, y_2) - BK(x_2, y_1)\) where BK is another kernel the preference kernel relies on. |
class |
UncrossedPairwiseProductKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) \cdot BK(x_2, y_2)\) where BK is another kernel the kernel on pairs relies on. |
class |
UncrossedPairwiseSumKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2)\) where BK is another kernel the kernel on pairs relies on. |
Modifier and Type | Class and Description |
---|---|
class |
NormalizationKernel
Normalization of a generic kernel K
Normalization formula: \(K(x,y) = \frac{K(x,y)}{\sqrt{(K(x,x) \cdot K(y,y))}}\)
|
class |
PolynomialKernel |
class |
RbfKernel
Radial Basis Function Kernel.
|
Copyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.