public class EpsilonSvmRegression extends LibCSvmSolver implements RegressionLearningAlgorithm, KernelMethod
It is a Java porting of the library LIBSVM v3.17, written in C++.
Further details can be found in:
[CC Chang & CJ Lin, 2011] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011.
[Vapnik, 1998] V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.
and
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
LibSvmSolver.Pair
Modifier and Type | Field and Description |
---|---|
protected UnivariateKernelMachineRegressionFunction |
regressor
The regression function to be returned
|
active_set, active_size, alpha, alpha_status, cn, cp, doShrinking, eps, examples, G, G_bar, kernel, l, label, logIteration, p, QD, shrinkingIteration, TAU, unshrink, y
Constructor and Description |
---|
EpsilonSvmRegression() |
EpsilonSvmRegression(Kernel kernel,
Label label,
float c,
float pReg) |
Modifier and Type | Method and Description |
---|---|
EpsilonSvmRegression |
duplicate()
Creates a new instance of the LearningAlgorithm initialized with the same parameters
of the learningAlgorithm to be duplicated.
|
protected float[] |
get_QD()
For each example i, it return the K_ii score
|
protected float |
get_Qij(int i,
int j) |
RegressionFunction |
getPredictionFunction()
Returns the regressor learned during the training process
|
float |
getpReg() |
void |
learn(Dataset dataset)
It starts the training process exploiting the provided
dataset |
void |
reset()
Resets all the learning process, returning to the default state.
|
void |
setKernel(Kernel kernel)
Sets the kernel this
|
void |
setLabels(Label... labels) |
void |
setPredictionFunction(PredictionFunction predictionFunction)
Sets the predictionFunction learned during the training process.
|
void |
setpReg(float pReg) |
protected void |
swap_index(int i,
int j)
Swap the info of two examples
|
be_shrunk, calculate_rho, do_shrinking, getCSvmAlpha, select_working_set
getCn, getCp, getEps, getKernel, getLabel, getLabels, info, is_free, is_lower_bound, is_upper_bound, kernel, reconstruct_gradient, setC, setCn, setCp, setEps, setLabel, setLabels, solve, swap, swap, swap, swap
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getLabels, setLabels
getKernel
protected UnivariateKernelMachineRegressionFunction regressor
public EpsilonSvmRegression duplicate()
LearningAlgorithm
duplicate
in interface LearningAlgorithm
protected float[] get_QD()
LibSvmSolver
get_QD
in class LibSvmSolver
protected float get_Qij(int i, int j)
get_Qij
in class LibSvmSolver
public float getpReg()
public void setpReg(float pReg)
public RegressionFunction getPredictionFunction()
RegressionLearningAlgorithm
getPredictionFunction
in interface LearningAlgorithm
getPredictionFunction
in interface RegressionLearningAlgorithm
public void learn(Dataset dataset)
LearningAlgorithm
dataset
learn
in interface LearningAlgorithm
dataset
- the training datapublic void reset()
LearningAlgorithm
reset
in interface LearningAlgorithm
public void setKernel(Kernel kernel)
KernelMethod
setKernel
in interface KernelMethod
kernel
- the kernel to setpublic void setLabels(Label... labels)
protected void swap_index(int i, int j)
LibSvmSolver
swap_index
in class LibSvmSolver
i
- the first example indexj
- the second example indexpublic void setPredictionFunction(PredictionFunction predictionFunction)
LearningAlgorithm
setPredictionFunction
in interface LearningAlgorithm
Copyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.