C - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.L2R_L2_SvcFunction
c - Variable in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
calculate_r() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibNuSvmSolver
calculate_rho() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibCSvmSolver
calculate_rho() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibNuSvmSolver
calculate_rho() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
calculateDistance(Example, Cluster) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
Estimate the distance of an example from the centroid
calculateVector(Example) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
It derives an array of doubles containing the linearized representation
checkConsistency(int, int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
checkRowValidity() - Method in class it.uniroma2.sag.kelp.data.dataset.DatasetReader
checkThresholdCondition(TreeNode) - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeLowerThanThreshold
ClassificationDemo - Class in it.uniroma2.sag.kelp.examples.main
ClassificationDemo() - Constructor for class it.uniroma2.sag.kelp.examples.main.ClassificationDemo
ClassificationLearningAlgorithm - Interface in it.uniroma2.sag.kelp.learningalgorithm.classification
It is a generic Machine Learning algorithm for Classification tasks
ClassificationOutput - Interface in it.uniroma2.sag.kelp.predictionfunction.classifier
It is a generic output provided by a classifier
classifier - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryCSvmClassification
The classifier to be returned
classifier - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
classifier - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
classifier - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
Classifier - Interface in it.uniroma2.sag.kelp.predictionfunction.classifier
It is a generic classifier, i.e.
Classify - Class in it.uniroma2.sag.kelp.main
Classify() - Constructor for class it.uniroma2.sag.kelp.main.Classify
classStats - Variable in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
clear() - Method in class it.uniroma2.sag.kelp.data.clustering.Cluster
This function clear the set of object inside the cluster
clear() - Method in interface it.uniroma2.sag.kelp.kernel.tree.deltamatrix.DeltaMatrix
Clear the delta matrix
clear() - Method in class it.uniroma2.sag.kelp.kernel.tree.deltamatrix.DynamicDeltaMatrix
Deprecated.
Clear the delta matrix
clear() - Method in class it.uniroma2.sag.kelp.kernel.tree.deltamatrix.StaticDeltaMatrix
Clear the delta matrix
clear() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansCluster
clear() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
Clear all the counters for a new processing.
clear() - Method in class it.uniroma2.sag.kelp.utils.evaluation.Evaluator
This method should reset the state of the evaluator
clear() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Clear all the counters for a new processing.
clear() - Method in class it.uniroma2.sag.kelp.utils.evaluation.RegressorEvaluator
clone() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
close() - Method in class it.uniroma2.sag.kelp.data.dataset.DatasetReader
Closes the reading buffer
close() - Method in class it.uniroma2.sag.kelp.data.dataset.DatasetWriter
close() - Method in class it.uniroma2.sag.kelp.data.dataset.SequenceDatasetReader
Closes the reading buffer
close() - Method in class it.uniroma2.sag.kelp.data.dataset.SequenceDatasetWriter
Close the output file
Cluster - Class in it.uniroma2.sag.kelp.data.clustering
It is the instance of a Cluster, intended as a set of objects, instantiated
as Examples, grouped together according to a measure of similarity.
Cluster() - Constructor for class it.uniroma2.sag.kelp.data.clustering.Cluster
The cluster is initialized without any label
Cluster(String) - Constructor for class it.uniroma2.sag.kelp.data.clustering.Cluster
The cluster is initialized and labeled
cluster(Dataset) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.clustering.ClusteringAlgorithm
It starts the clustering process exploiting the provided
dataset
cluster(Dataset, ExampleSelector) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.clustering.ClusteringAlgorithm
It starts the clustering process exploiting the provided
dataset
cluster(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
cluster(Dataset, ExampleSelector) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
cluster(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
cluster(Dataset, ExampleSelector) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
ClusterExample - Class in it.uniroma2.sag.kelp.data.clustering
ClusterExample(Example, float) - Constructor for class it.uniroma2.sag.kelp.data.clustering.ClusterExample
ClusterExample() - Constructor for class it.uniroma2.sag.kelp.data.clustering.ClusterExample
ClusterExampleTypeResolver - Class in it.uniroma2.sag.kelp.data.clustering
It is a class implementing TypeIdResolver
which will be used by
Jackson library during the serialization in JSON and deserialization of
ClusterExample
s
ClusterExampleTypeResolver() - Constructor for class it.uniroma2.sag.kelp.data.clustering.ClusterExampleTypeResolver
ClusteringAlgorithm - Interface in it.uniroma2.sag.kelp.learningalgorithm.clustering
It is a generic Clustering algorithm
ClusteringEvaluator - Class in it.uniroma2.sag.kelp.utils.evaluation
Implements Evaluation methods for clustering algorithms.
ClusteringEvaluator() - Constructor for class it.uniroma2.sag.kelp.utils.evaluation.ClusteringEvaluator
ClusterList - Class in it.uniroma2.sag.kelp.data.clustering
ClusterList() - Constructor for class it.uniroma2.sag.kelp.data.clustering.ClusterList
ClusterTypeResolver - Class in it.uniroma2.sag.kelp.data.clustering
It is a class implementing TypeIdResolver
which will be used by
Jackson library during the serialization in JSON and deserialization of
Cluster
s
ClusterTypeResolver() - Constructor for class it.uniroma2.sag.kelp.data.clustering.ClusterTypeResolver
cn - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
The regularization parameter of negative examples
COMMENT_REPRESENTATION_NAME - Static variable in class it.uniroma2.sag.kelp.data.dataset.LibsvmDatasetReader
COMMENT_SEPARATOR - Static variable in class it.uniroma2.sag.kelp.data.dataset.LibsvmDatasetReader
compareTo(ClusterExample) - Method in class it.uniroma2.sag.kelp.data.clustering.ClusterExample
compareTo(SequencePath) - Method in class it.uniroma2.sag.kelp.data.example.SequencePath
compareTo(SequenceEmission) - Method in class it.uniroma2.sag.kelp.data.label.SequenceEmission
compareTo(StringLabel) - Method in class it.uniroma2.sag.kelp.data.label.StringLabel
compareTo(NodeDistance) - Method in class it.uniroma2.sag.kelp.data.representation.graph.NodeDistance
compareTo(char[], char[]) - Static method in class it.uniroma2.sag.kelp.kernel.tree.TreeKernelUtils
CompositionalNodeSimilarity - Class in it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional
This class implements a specific node similarity that computes the similarity
between compositional nodes, by applying the "sum" operator.
CompositionalNodeSimilarity() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
Default constructor, used only for JSON serialization/deserialization
purposes.
CompositionalNodeSimilarity(WordspaceI) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
Constructor that enable to specify the wordspace path.
CompositionalNodeSimilarity(WordspaceI, boolean, boolean) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
Constructor that enable to specify the wordspace path.
CompositionalNodeSimilarityDilation - Class in it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.dilation
This class implements a specific node similarity that computes the similarity
between compositional nodes, by applying the "dilation" operator.
CompositionalNodeSimilarityDilation() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.dilation.CompositionalNodeSimilarityDilation
Default constructor, used only for JSON serialization/deserialization
purposes.
CompositionalNodeSimilarityDilation(WordspaceI) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.dilation.CompositionalNodeSimilarityDilation
Constructor that enable to specify the wordspace path.
CompositionalNodeSimilarityDilation(WordspaceI, boolean, boolean) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.dilation.CompositionalNodeSimilarityDilation
Constructor that enable to specify the wordspace path.
CompositionalNodeSimilarityProduct - Class in it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.product
This class implements a specific node similarity that computes the similarity
between compositional nodes, by applying the "prod" operator, i.e.
CompositionalNodeSimilarityProduct() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.product.CompositionalNodeSimilarityProduct
Default constructor, used only for JSON serialization/deserialization
purposes.
CompositionalNodeSimilarityProduct(WordspaceI) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.product.CompositionalNodeSimilarityProduct
Constructor that enable to specify the wordspace path.
CompositionalNodeSimilarityProduct(WordspaceI, boolean, boolean) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.product.CompositionalNodeSimilarityProduct
Constructor that enable to specify the wordspace path.
CompositionalNodeSimilaritySum - Class in it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.sum
This class implements a specific node similarity that computes the similarity
between compositional nodes, by applying the "sum" operator.
CompositionalNodeSimilaritySum() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.sum.CompositionalNodeSimilaritySum
Default constructor, used only for JSON serialization/deserialization
purposes.
CompositionalNodeSimilaritySum(WordspaceI) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.sum.CompositionalNodeSimilaritySum
Constructor that enable to specify the wordspace path.
CompositionalNodeSimilaritySum(WordspaceI, boolean, boolean) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.sum.CompositionalNodeSimilaritySum
Constructor that enable to specify the wordspace path.
CompositionalStructureElement - Class in it.uniroma2.sag.kelp.data.representation.structure
CompositionalStructureElement represents a compositional node.
CompositionalStructureElement() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
CompositionalStructureElement(String, LexicalStructureElement, LexicalStructureElement) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
compute() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
compute() - Method in class it.uniroma2.sag.kelp.utils.evaluation.Evaluator
This method is intented to force the computation of the performance measure.
compute() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
compute() - Method in class it.uniroma2.sag.kelp.utils.evaluation.RegressorEvaluator
computed - Variable in class it.uniroma2.sag.kelp.utils.evaluation.Evaluator
computeTotalNumberOfNodes(SimpleDataset, String) - Static method in class it.uniroma2.sag.kelp.examples.demo.pruning.TreePruningDemo
computeWeight(Example, float, float, float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
concatenateVectors(Example, List<String>, List<Float>) - Static method in class it.uniroma2.sag.kelp.data.manipulator.VectorConcatenationManipulator
Returns a SparseVector corresponding to the concatenation of the vectors in example
identified with representationsToBeMerged
Each vector is scaled with respect to the corresponding scaling factor in weights
concatenateVectors(Example, List<String>, List<Float>, String) - Static method in class it.uniroma2.sag.kelp.data.manipulator.VectorConcatenationManipulator
Add a new representation identified with combinationName corresponding to the concatenation of the vectors in example
identified with representationsToBeMerged
Each vector is scaled with respect to the corresponding scaling factor in weights
containsAdditionalInfo(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElement
Verifies whether this element contains the additional information
identified by infoName
ContentBasedTreeNodeFilter - Class in it.uniroma2.sag.kelp.data.representation.tree.node.filter
This implementation of TreeNodeFilter
selects only treeNode containing
a StructureElement interesting w.r.t.
ContentBasedTreeNodeFilter(StructureElementFilter) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.node.filter.ContentBasedTreeNodeFilter
Constructor for ContentBasedTreeNodeFilter
ContentBasedTreeNodeSimilarity - Class in it.uniroma2.sag.kelp.data.representation.tree.node.similarity
Evaluates the similarity between two TreeNodes comparing their StructureElements
using a StructureElementSimilarityI
ContentBasedTreeNodeSimilarity(StructureElementSimilarityI) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.node.similarity.ContentBasedTreeNodeSimilarity
Constructor
copyVector() - Method in interface it.uniroma2.sag.kelp.data.representation.Vector
Returns a copy of this vector.
copyVector() - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
copyVector() - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
correct - Variable in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
cp - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
The regularization parameter of positive examples
cp - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
createInputStream(String) - Static method in class it.uniroma2.sag.kelp.utils.FileUtils
Creates an InputStream for reading a file.
createMaxChildrenPrunerObject(int, String) - Static method in class it.uniroma2.sag.kelp.examples.demo.pruning.TreePruningDemo
createMaxNumberOfLeavesPrunerObject(int, String) - Static method in class it.uniroma2.sag.kelp.examples.demo.pruning.TreePruningDemo
createOutputStream(String) - Static method in class it.uniroma2.sag.kelp.utils.FileUtils
Creates an OutputStream for reading a file.
CsvDatasetReader - Class in it.uniroma2.sag.kelp.data.dataset
A utility class to read dataset in the csv format.
CsvDatasetReader(String, String, boolean, CsvDatasetReader.LabelPosition) - Constructor for class it.uniroma2.sag.kelp.data.dataset.CsvDatasetReader
Constructor for reading dataset in csv format.
CsvDatasetReader(String, String, boolean, CsvDatasetReader.LabelPosition, StringLabel) - Constructor for class it.uniroma2.sag.kelp.data.dataset.CsvDatasetReader
Constructor for reading dataset in csv format for regression tasks (the regression value is assumed to
be in the first column).
CsvDatasetReader.LabelPosition - Enum in it.uniroma2.sag.kelp.data.dataset
G - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
Gradient
G_bar - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
Gradient bar
generateExampleWithHistory(SequenceExample, SequencePath, int) - Method in interface it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGenerator
At labeling time, this method allows to enrich a specific
Example
with the labels assigned by the classifier to the
previous Example
s
generateExampleWithHistory(SequenceExample, SequencePath, int) - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorKernel
generateExampleWithHistory(SequenceExample, SequencePath, int) - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorLinear
generateSequenceExampleEnrichedWithHistory(SequenceExample) - Method in interface it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGenerator
This method allows to enrich each Example
from an input
SequenceExample
with the labels assigned by the classifier
to the previous Example
s
generateSequenceExampleEnrichedWithHistory(SequenceExample) - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorKernel
generateSequenceExampleEnrichedWithHistory(SequenceExample) - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorLinear
get(int, int) - Method in interface it.uniroma2.sag.kelp.kernel.tree.deltamatrix.DeltaMatrix
Get a value from the matrix
get(int, int) - Method in class it.uniroma2.sag.kelp.kernel.tree.deltamatrix.DynamicDeltaMatrix
Deprecated.
Get a value from the matrix
get(int, int) - Method in class it.uniroma2.sag.kelp.kernel.tree.deltamatrix.StaticDeltaMatrix
Get a value from the matrix
get_nr_variable() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.L2R_L2_SvcFunction
get_QD() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
For each example i, it return the K_ii score
get_QD() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
get_Qij(int, int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
get_Qij(int, int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
getA() - Method in class it.uniroma2.sag.kelp.kernel.standard.PolynomialKernel
getAccuracy() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
Return the accuracy
getAccuracy() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Returns the accuracy
getActiveFeatures() - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
getActiveFeatures() - Method in interface it.uniroma2.sag.kelp.data.representation.Vector
Returns a map containing all the non-zero features
getActiveFeatures() - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
getAdditionalInformation(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElement
Returns the additional information identified by infoName
getAdditionalInfos() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.SameAdditionalInfoStructureElementSimilarity
Returns the list of additionalInfos two structure elements must
both have or not have in order to have a non zero similarity
getAllClasses() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryMarginClassifierOutput
getAllClasses() - Method in interface it.uniroma2.sag.kelp.predictionfunction.classifier.ClassificationOutput
Returns all the classes involved in the classification process (both predicted and not)
getAllClasses() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassificationOutput
getAllClasses() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassificationOutput
getAllClasses() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassificationOutput
getAllNodes() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Get recursively all Tree Nodes below the target node
getAllNodes() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getAllowDifferentPOS() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.LexicalStructureElementSimilarity
Returns whether the similarity between words having different Part-of-Speech is allowed
or if it must be set to 0
getAllProperties() - Method in interface it.uniroma2.sag.kelp.predictionfunction.regressionfunction.RegressionOutput
Returns all the properties on which the regressor has to provide predictions
getAllProperties() - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateRegressionOutput
getAlpha() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
Returns the learning rate, i.e.
getAlphas() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
getAncestor(int) - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Returns the generation
generation ancestor of this node
(for instance 1-generation ancestor is the father, 2-generation ancestor
is the grandfather, etc)
getAssignedLabel(int) - Method in class it.uniroma2.sag.kelp.data.example.SequencePath
getAssignedSequnceLabels() - Method in class it.uniroma2.sag.kelp.data.example.SequencePath
getB() - Method in class it.uniroma2.sag.kelp.kernel.standard.PolynomialKernel
getBaseAlgorithm() - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.RandomizedBudgetPerceptron
getBaseAlgorithm() - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
getBaseAlgorithm() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationKernelBasedLearningAlgorithm
getBaseAlgorithm() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLinearLearningAlgorithm
getBaseAlgorithm() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.MultiLabelClassificationLearning
This method will return the base algorithm.
getBaseAlgorithm() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsAllLearning
This method will return the base algorithm.
getBaseAlgorithm() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsOneLearning
This method will return the base algorithm.
getBaseAlgorithm() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.MetaLearningAlgorithm
Returns the base algorithm this meta algorithm is based on
getBaseAlgorithm() - Method in class it.uniroma2.sag.kelp.learningalgorithm.MultiEpochLearning
getBaseKernel() - Method in class it.uniroma2.sag.kelp.kernel.KernelComposition
Returns the kernel this kernel is enriching
getBaseLearningAlgorithm() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
getBasePredictionFunction() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.SequenceModel
getBaseSimilarity() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.SameAdditionalInfoStructureElementSimilarity
Returns the base similarity applied when two structure elements have
the same additional infos
getBeamSize() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
getBeamSize() - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
getBias() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryModel
getBinaryClassifiers() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassifier
getBinaryClassifiers() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassifier
getBinaryClassifiers() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassifier
getBranchingFactor() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Returns the branching factor of the tree rooted by this node
getBranchingFactor() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getBudget() - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
Returns the budget, i.e.
getC() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
getC() - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
getC() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
getCacheHits() - Method in class it.uniroma2.sag.kelp.kernel.cache.KernelCache
getCacheMisses() - Method in class it.uniroma2.sag.kelp.kernel.cache.KernelCache
getCentroid() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansCluster
getCharArray() - Method in class it.uniroma2.sag.kelp.data.representation.string.StringRepresentation
getChildren() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Get the direct children of the target node
getClassificationLabels() - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Returns all the classification labels in the dataset.
getClassificationLabels() - Method in class it.uniroma2.sag.kelp.data.dataset.SequenceDataset
getClassificationLabels() - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getClassificationLabels() - Method in class it.uniroma2.sag.kelp.data.example.Example
getClassificationLabels() - Method in class it.uniroma2.sag.kelp.data.example.SequenceExample
getClassName() - Method in class it.uniroma2.sag.kelp.data.label.StringLabel
getCn() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
getCn() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
getCn() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
getCn() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
getCn() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
getCn() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
getCompositionalInformationFor(LexicalStructureElement, LexicalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
This method takes in input two LexicalStructureElement representing a
head and a modifier.
getCompositionalInformationFor(LexicalStructureElement, LexicalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.dilation.CompositionalNodeSimilarityDilation
This method takes in input two LexicalStructureElement representing a
head and a modifier.
getCompositionalInformationFor(LexicalStructureElement, LexicalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.product.CompositionalNodeSimilarityProduct
This method takes in input two LexicalStructureElement representing a
head and a modifier.
getCompositionalInformationFor(LexicalStructureElement, LexicalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.sum.CompositionalNodeSimilaritySum
This method takes in input two LexicalStructureElement representing a
head and a modifier.
getContent() - Method in class it.uniroma2.sag.kelp.data.representation.graph.GraphNode
getContent() - Method in class it.uniroma2.sag.kelp.data.representation.sequence.SequenceElement
Returns the content of this SequenceElement
getContent() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
getCorrespondingVector(StructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.VectorBasedStructureElementSimilarity
Returns the vector associated to element
.
getCounter() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassificationOutput
getCp() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
getCp() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
getCp() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
getCp() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
getCp() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
getCp() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
getCSvmAlpha(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibCSvmSolver
Get the initial weight for the future Support Vectors
getDcdLoss() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
getDegree() - Method in class it.uniroma2.sag.kelp.kernel.standard.PolynomialKernel
getDeletingPolicy() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
getDeltaMatrix() - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
getDeltaMatrix() - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
getDeltaMatrix() - Method in class it.uniroma2.sag.kelp.kernel.tree.SubSetTreeKernel
Get the DeltaMatrix used to store the evaluated delta functions
of this tree kernel
getDeltaMatrix() - Method in class it.uniroma2.sag.kelp.kernel.tree.SubTreeKernel
Get the DeltaMatrix used to store the evaluated delta functions
of this tree kernel
getDenseVectorByEnsembleAndJuxtaposition(Example) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
Given an example, this method produces a DenseVector
that is
the concatenation of the vectors obtained by each projection functions
used in the Ensemble.
getDenseVectorByEnsembleAndJuxtaposition(Example, List<Float>) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
Given an example, this method produces a DenseVector
that is
the concatenation of the vectors obtained by each projection functions
used in the Ensemble.
getDependencyRelation() - Method in class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
getDescendants(int) - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Returns all the generation
generations descendants of this node
(for instance 1-generation descendants are the children, the 2-generations
descendants are the grandchildren, etc)
getDictionaryDanilo() - Method in class it.uniroma2.sag.kelp.wordspace.Wordspace
getDictionaryDanilo() - Method in interface it.uniroma2.sag.kelp.wordspace.WordspaceI
Returns the complete set of words in the vocabulary (words having an associated vector in this wordspace)
getDist() - Method in class it.uniroma2.sag.kelp.data.clustering.ClusterExample
getDistance() - Method in class it.uniroma2.sag.kelp.data.representation.graph.NodeDistance
getElements() - Method in class it.uniroma2.sag.kelp.data.representation.sequence.SequenceRepresentation
Returns the elements of this sequence
getEmbeddingSize() - Method in interface it.uniroma2.sag.kelp.linearization.LinearizationFunction
getEmbeddingSize() - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
getEmbeddingSize() - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
getEmission() - Method in class it.uniroma2.sag.kelp.data.label.SequenceEmission
getEnrichmentName() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
getEnrichmentName() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.VectorBasedStructureElementSimilarity
Returns the identifier of the vectors associated to
a StructureElement during the manipulation operation performed
by a Manipulator (i.e.
getEpochs() - Method in class it.uniroma2.sag.kelp.learningalgorithm.MultiEpochLearning
getEps() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
getEpsilon() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.PassiveAggressiveRegression
Returns epsilon, i.e.
getEta() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
getExample() - Method in class it.uniroma2.sag.kelp.data.clustering.ClusterExample
getExample(int) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
Return the example stored in the exampleIndex
position
getExample(int) - Method in class it.uniroma2.sag.kelp.data.example.SequenceExample
getExample() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansExample
getExample() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansExample
getExamples() - Method in class it.uniroma2.sag.kelp.data.clustering.Cluster
This function returns the set of objects inside the cluster
getExamples() - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Returns an array containing all the stored examples
getExamples() - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getExamples() - Method in class it.uniroma2.sag.kelp.data.example.SequenceExample
getExamplesToStore() - Method in class it.uniroma2.sag.kelp.kernel.cache.DynamicIndexKernelCache
Deprecated.
Returns the maximum number of examples whose pairwise kernel computations
can be simultaneously stored
getExamplesToStore() - Method in class it.uniroma2.sag.kelp.kernel.cache.DynamicIndexSquaredNormCache
Returns the maximum number of norms that
can be simultaneously stored
getExamplesToStore() - Method in class it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache
Deprecated.
Returns the maximum number of examples whose pairwise kernel computations
can be simultaneously stored
getExamplesToStore() - Method in class it.uniroma2.sag.kelp.kernel.cache.FixSizeKernelCache
Returns the maximum number of examples whose pairwise kernel computations
can be simultaneously stored
getExampleString() - Method in exception it.uniroma2.sag.kelp.data.example.ParsingExampleException
getF1() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
Return the f1 of the positive class
getF1For(Label) - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the f1 for the specified label
getFather() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Get the father of the target node
getFeatureValue(int) - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
Returns the feature value of the featureIndex
-th element
getFeatureValue(Object) - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
getFeatureValue(Object) - Method in interface it.uniroma2.sag.kelp.data.representation.Vector
Returns the value of the feature identified with featureIdentifier
getFeatureValue(String) - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
Returns the value associated to a feature
getFeatureValue(Object) - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
getFeatureValues() - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
Returns the feature values in the EJML format
getFinalNode() - Method in class it.uniroma2.sag.kelp.data.representation.graph.NodeDistance
getFirst() - Method in exception it.uniroma2.sag.kelp.data.representation.vector.exception.VectorOperationException
getFn() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
Return the false negatives
getFnFor(Label) - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the false negatives for the specified label
getFp() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
Return the false positives
getFpFor(Label) - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the false positives for the specified label
getFromIntToWord() - Static method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
getFromWordToInt() - Static method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
getGamma() - Method in class it.uniroma2.sag.kelp.kernel.standard.RbfKernel
getHead() - Method in class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
getHeight() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Returns the height of the tree rooted by this node (i.e.
getHeight() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getHistoryBefore(int, int) - Method in class it.uniroma2.sag.kelp.data.example.SequencePath
This method generate a string representing an artificial feature used in
the labeling process.
getHyperplane() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryLinearModel
getId() - Method in class it.uniroma2.sag.kelp.data.example.Example
Returns a unique identifier of the example.
getId() - Method in class it.uniroma2.sag.kelp.data.representation.graph.GraphNode
Returns the id of this node
getId() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
getIgnorePosInLemmaMatches() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.LexicalStructureElementSimilarity
Returns whether two lexical structure elements must provide a perfect match if their lemmas are the same,
regardless their part-of-speeches
getIgnorePosOnLexicals() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.ExactMatchingStructureElementSimilarity
Returns whether the part-of-speech is ignored in comparing two
LexicalStructureElements
getIncludeLeaves() - Method in class it.uniroma2.sag.kelp.kernel.tree.SubSetTreeKernel
Returns whether the leaves must be involved in the kernel computation
getIncludeLeaves() - Method in class it.uniroma2.sag.kelp.kernel.tree.SubTreeKernel
Returns whether the leaves must be involved in the kernel computation
getIndex() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.LibLinearFeature
getIndex() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.LibLinearFeatureNode
getInitialNode() - Method in class it.uniroma2.sag.kelp.data.representation.graph.NodeDistance
getInstance() - Static method in class it.uniroma2.sag.kelp.data.representation.RepresentationFactory
Returns an instance of the class RepresentatioFactory
getInstance() - Static method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElementFactory
Returns an instance of the class StructureElementFactory
getInstance() - Static method in class it.uniroma2.sag.kelp.kernel.tree.deltamatrix.StaticDeltaMatrix
getInstance() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.SupportVector
getIntraPairSimProduct() - Method in class it.uniroma2.sag.kelp.kernel.pairs.BestPairwiseAlignmentKernel
getIntraPairSimProduct() - Method in class it.uniroma2.sag.kelp.kernel.pairs.PairwiseProductKernel
getIntraPairSimProduct() - Method in class it.uniroma2.sag.kelp.kernel.pairs.PairwiseSumKernel
getIntraPairSimProduct() - Method in class it.uniroma2.sag.kelp.kernel.pairs.UncrossedPairwiseProductKernel
getIntraPairSimProduct() - Method in class it.uniroma2.sag.kelp.kernel.pairs.UncrossedPairwiseSumKernel
getIterationNumber() - Method in class it.uniroma2.sag.kelp.data.manipulator.WLSubtreeMapper
Returns the maximum depth of the visits of the WL kernel
getIterations() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
Returns the number of iterations
getK() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
Returns the number of examples k that Pegasos exploits in its
mini-batch learning approach
getK() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
getK() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
getKernel() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.VectorBasedStructureElementSimilarity
Returns the kernel used in comparing two vectors
getKernel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.RandomizedBudgetPerceptron
getKernel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
getKernel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationKernelBasedLearningAlgorithm
getKernel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
getKernel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
getKernel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.KernelizedPassiveAggressiveClassification
getKernel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.KernelizedPerceptron
getKernel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
getKernel() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.KernelMethod
Returns the kernel exploited by this learner
getKernel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.KernelizedPassiveAggressiveRegression
getKernel() - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
getKernel() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
getKernel() - Method in interface it.uniroma2.sag.kelp.predictionfunction.model.KernelMachineModel
getKernelCache() - Method in class it.uniroma2.sag.kelp.kernel.Kernel
Returns the cache in which storing the kernel operations in the RKHS defined
by this kernel
getKernelComputations() - Method in class it.uniroma2.sag.kelp.kernel.Kernel
Returns the number of times the kernel function has been invoked
getKernelValue(Example, Example) - Method in class it.uniroma2.sag.kelp.kernel.cache.KernelCache
Retrieves in the cache the kernel operation between two examples
getLabel() - Method in class it.uniroma2.sag.kelp.data.clustering.Cluster
This function returns the label of the cluster
getLabel() - Method in class it.uniroma2.sag.kelp.data.label.SequenceEmission
getLabel() - Method in class it.uniroma2.sag.kelp.data.representation.structure.UntypedStructureElement
getLabel() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.BinaryLearningAlgorithm
getLabel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
getLabel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
getLabel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
getLabel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
getLabel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
getLabel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
getLabel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
getLabel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
getLabel() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
getLabel() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryClassifier
getLabelDistances(DirectedGraphRepresentation) - Static method in class it.uniroma2.sag.kelp.data.representation.graph.GraphUtils
getLabels() - Method in class it.uniroma2.sag.kelp.data.example.Example
Returns the classification classificationLabels of this example
getLabels() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.BinaryLearningAlgorithm
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.MultiLabelClassificationLearning
Returns the labels to be learned
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsAllLearning
Returns the labels to be learned applying a one-vs-all strategy
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsOneLearning
Returns the labels to be learned applying a one-vs-one strategy
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
getLabels() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.LearningAlgorithm
Returns the labels representing the concept to be learned.
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.MultiEpochLearning
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
getLabels() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
getLabels() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryClassifier
getLabels() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassifier
getLabels() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassifier
getLabels() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassifier
getLabels() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.MulticlassModel
getLabels() - Method in interface it.uniroma2.sag.kelp.predictionfunction.PredictionFunction
Returns the labels representing the concept to be predicted.
getLabels() - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateRegressionFunction
getLabels() - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
getLambda() - Method in class it.uniroma2.sag.kelp.kernel.sequence.SequenceKernel
getLambda() - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
Get the Vertical Decay factor
getLambda() - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
Get the Vertical Decay factor
getLambda() - Method in class it.uniroma2.sag.kelp.kernel.tree.SubSetTreeKernel
Get the decay factor
getLambda() - Method in class it.uniroma2.sag.kelp.kernel.tree.SubTreeKernel
Get the decay factor
getLambda() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
Returns the regularization coefficient
getLandmarks() - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
getLearningAlgorithm(float, String, StringLabel) - Method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorization
getLearningAlgorithm(float, String, StringLabel) - Method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationDCD
getLearningAlgorithm(float, String, StringLabel) - Static method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationDCDExperimentUtils
getLearningAlgorithm(float, String, StringLabel) - Method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationLibLinear
getLearningAlgorithm(float, String, StringLabel) - Static method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationLibLinearExperimentUtils
getLearningAlgorithm(float, String, StringLabel) - Method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationPA
getLearningAlgorithm(float, String, StringLabel) - Static method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationPAExperimentUtils
getLearningAlgorithm(float, String, StringLabel) - Method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationPegasos
getLearningAlgorithm(float, String, StringLabel) - Static method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationPegasosExperimentUtils
getLearningAlgorithm(float, String, StringLabel) - Method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationSCW
getLearningAlgorithm(float, String, StringLabel) - Static method in class it.uniroma2.sag.kelp.examples.demo.rcv1.RCV1BinaryTextCategorizationSCWExperimentUtils
getLeaves() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
getLeaves() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
Returns all the leaves, i.e.
getLeftExample() - Method in class it.uniroma2.sag.kelp.data.example.ExamplePair
Returns the left example in the pair
getLemma() - Method in class it.uniroma2.sag.kelp.data.representation.structure.LexicalStructureElement
getLenght() - Method in class it.uniroma2.sag.kelp.data.example.SequenceExample
getLinearizedDataset(Dataset, String) - Method in interface it.uniroma2.sag.kelp.linearization.LinearizationFunction
This method linearizes all the examples in the input dataset
, generating a corresponding linearized dataset.
getLinearizedDataset(Dataset, String) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
getLinearizedDataset(Dataset, String) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
getLinearizedExample(Example, String) - Method in interface it.uniroma2.sag.kelp.linearization.LinearizationFunction
This method linearizes an input example, providing a new example
containing only a representation with a specific name, provided as input.
getLinearizedExample(Example, String) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
getLinearizedExample(Example, String) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
getLinearRepresentation(Example) - Method in interface it.uniroma2.sag.kelp.linearization.LinearizationFunction
Given an input Example
, this method generates a linear
Representation>
, i.e.
getLinearRepresentation(Example) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
getLinearRepresentation(Example) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
getLoss() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
getM() - Method in class it.uniroma2.sag.kelp.data.dataset.selector.FirstExamplesSelector
getM() - Method in class it.uniroma2.sag.kelp.data.dataset.selector.RandomExampleSelector
getMacroF1() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the macro-F1
getMacroPrecision() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the macro-precision
getMacroRecall() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the macro-recall
getMargin() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
Returns the desired margin, i.e.
getMarkingPrefix() - Method in class it.uniroma2.sag.kelp.data.manipulator.TreePairRelTagger
Returns the prefix used to mark the related nodes
getMatrixPath() - Method in class it.uniroma2.sag.kelp.wordspace.Wordspace
getMaxEmissionCandidates() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
getMaxEmissionCandidates() - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
getMaxId() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Get the max id within all node under the target node
getMaxId() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
Get the max id within all nodes
getMaxIterations() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
getMaxIterations() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
getMaxIterations() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
getMaxMarginForLabel() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassificationOutput
getMaxNumberOfRows() - Method in class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
getMaxSubseqLeng() - Method in class it.uniroma2.sag.kelp.kernel.sequence.SequenceKernel
getMaxSubseqLeng() - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
getMaxSubseqLeng() - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
getMean(float[]) - Static method in class it.uniroma2.sag.kelp.utils.Math
Computes the arithmetic mean \(\bar{x}\) of the input values \(x_1, \ldots x_n\)
getMeanF1() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Deprecated.
getMeanF1For(ArrayList<Label>) - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the mean of the F1 scores considering the specified labels only
getMeanSquaredError(Label) - Method in class it.uniroma2.sag.kelp.utils.evaluation.RegressorEvaluator
Returns the mean square error of the Label label.
getMeanSquaredErrors() - Method in class it.uniroma2.sag.kelp.utils.evaluation.RegressorEvaluator
Returns the mean error between the different Label{s}
getMechanism() - Method in class it.uniroma2.sag.kelp.data.clustering.ClusterExampleTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.data.clustering.ClusterTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.data.example.ExampleTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.data.label.LabelTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.data.representation.RepresentationTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.StructureElementSimilarityTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.kernel.cache.KernelCacheTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.kernel.cache.SquaredNormCacheTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.kernel.KernelTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.learningalgorithm.LearningAlgorithmTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.predictionfunction.PredictionFunctionTypeResolver
getMechanism() - Method in class it.uniroma2.sag.kelp.wordspace.WordspaceTypeResolver
getMessage() - Method in exception it.uniroma2.sag.kelp.data.example.ParsingExampleException
getMI(ClusterList) - Static method in class it.uniroma2.sag.kelp.utils.evaluation.ClusteringEvaluator
getMicroF1() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Returns the micro-f1
getMicroPrecision() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Returns the micro-precision
getMicroRecall() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Returns the micro-recall
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryClassifier
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryKernelMachineClassifier
Returns the model
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryLinearClassifier
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassifier
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassifier
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassifier
getModel() - Method in interface it.uniroma2.sag.kelp.predictionfunction.PredictionFunction
Returns the model
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateKernelMachineRegressionFunction
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateLinearRegressionFunction
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateRegressionFunction
getModel() - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
getModels() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.MulticlassModel
getModifier() - Method in class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
getMu() - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
Get the Horizontal Decay factor
getMu() - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
Get the Horizontal Decay factor
getNegativeLabelsForClassifier() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassifier
Return the negative labels associated to each classifier
getNeighbours() - Method in class it.uniroma2.sag.kelp.data.representation.graph.GraphNode
getNext() - Method in class it.uniroma2.sag.kelp.data.representation.sequence.SequenceElement
Returns the next element in the sequence
getNextExample() - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Returns the next n Example
s stored in the Dataset or a fewer number
if n
examples are not available.
getNextExample() - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getNextExamples(int) - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Returns the next Example
stored in the Dataset
getNextExamples(int) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getNMI(ClusterList) - Static method in class it.uniroma2.sag.kelp.utils.evaluation.ClusteringEvaluator
getNodeDistances() - Method in class it.uniroma2.sag.kelp.data.representation.graph.DirectedGraphRepresentation
Returns the list of NodeDistance Objects
getNodeFromID(Integer) - Method in class it.uniroma2.sag.kelp.data.representation.graph.DirectedGraphRepresentation
Given a node id, return the corresponding GraphNode object
getNodeLabel() - Method in class it.uniroma2.sag.kelp.data.representation.graph.GraphNode
Get the label of a node
getNodeList() - Method in class it.uniroma2.sag.kelp.data.representation.graph.DirectedGraphRepresentation
Returns a list containing all the nodes in this graph
getNodeList(TreeNode) - Method in interface it.uniroma2.sag.kelp.data.representation.tree.utils.TreeNodeSelector
getNodeList(TreeNode) - Method in class it.uniroma2.sag.kelp.data.representation.tree.utils.TreeNodeSelectorAllChildren
getNodeList(TreeNode) - Method in class it.uniroma2.sag.kelp.data.representation.tree.utils.TreeNodeSelectorAllDescendants
getNodeList(TreeNode) - Method in class it.uniroma2.sag.kelp.data.representation.tree.utils.TreeNodeSelectorAllLeaves
getNodeSimilarity() - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
getNodesWithContentType(Class<? extends StructureElement>) - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
Returns all the nodes whose content has type clazz
getNoOfChildren() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
getNu() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryNuSvmClassification
getNu() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.OneClassSvmClassification
getNumberOfClassificationLabels() - Method in class it.uniroma2.sag.kelp.data.example.Example
Returns the number of classification classificationLabels whose this
instance is a positive example
getNumberOfColumns() - Method in class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
getNumberOfExamples() - Method in class it.uniroma2.sag.kelp.data.clustering.ClusterList
getNumberOfExamples() - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Returns the number of Example
s in the dataset
getNumberOfExamples() - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getNumberOfFeatures() - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
Returns the number of featuresValues
getNumberOfHits() - Method in class it.uniroma2.sag.kelp.kernel.Kernel
Returns the number of times a cache hit happened
getNumberOfMisses() - Method in class it.uniroma2.sag.kelp.kernel.Kernel
Returns the number of times a cache miss happened
getNumberOfNegativeExamples(Label) - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Returns the number of negative Example
s of a given class
getNumberOfNegativeExamples(Label) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getNumberOfNodes() - Method in class it.uniroma2.sag.kelp.data.representation.graph.DirectedGraphRepresentation
Returns the number of nodes in the graph.
getNumberOfNodes() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getNumberOfPositiveExamples(Label) - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Returns the number of positive Example
s of a given class
getNumberOfPositiveExamples(Label) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getNumberOfRegressionLabels() - Method in class it.uniroma2.sag.kelp.data.example.Example
Returns the number of regression classificationLabels
getNumberOfRepresentations() - Method in class it.uniroma2.sag.kelp.data.example.Example
Returns the number of representations in which this example is modeled
getNumberOfRepresentations() - Method in class it.uniroma2.sag.kelp.data.example.SimpleExample
getNumberOfSupportVectors() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
getNumberOfSupportVectors() - Method in interface it.uniroma2.sag.kelp.predictionfunction.model.KernelMachineModel
getNx() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNodePairs
getNz() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNodePairs
getObj() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
getOrderedNodeSetByLabel() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getOrderedNodeSetByProduction() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getOrderedNodeSetByProductionIgnoringLeaves() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getOverallF1() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Deprecated.
getOverallPrecision() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Deprecated.
getOverallRecall() - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Deprecated.
getP() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
getPaths() - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePrediction
getPerformanceMeasure(String, Object...) - Method in class it.uniroma2.sag.kelp.utils.evaluation.Evaluator
This method allow to retrieve a performance measure by specifying the name of the method to be used.
getPolicy() - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
getPos() - Method in class it.uniroma2.sag.kelp.data.representation.structure.LexicalStructureElement
getPos() - Method in class it.uniroma2.sag.kelp.data.representation.structure.PosStructureElement
getPrecision() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
Return the precision of the positive class
getPrecisionFor(Label) - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the precision for the specified label
getPredictedClasses() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryMarginClassifierOutput
getPredictedClasses() - Method in interface it.uniroma2.sag.kelp.predictionfunction.classifier.ClassificationOutput
Returns all the classes that the classifier has predicted
getPredictedClasses() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassificationOutput
getPredictedClasses() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassificationOutput
getPredictedClasses() - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassificationOutput
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.RandomizedBudgetPerceptron
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
getPredictionFunction() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.classification.ClassificationLearningAlgorithm
Returns the classifier learned during the training process
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryCSvmClassification
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryNuSvmClassification
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.MultiLabelClassificationLearning
This method returns the learned PredictionFunction.
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsAllLearning
This method returns the learned PredictionFunction.
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsOneLearning
This method returns the learned PredictionFunction.
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.KernelizedPassiveAggressiveClassification
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.LinearPassiveAggressiveClassification
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.KernelizedPerceptron
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.LinearPerceptron
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
getPredictionFunction() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.LearningAlgorithm
Returns the predictionFunction learned during the training process
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.MultiEpochLearning
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.KernelizedPassiveAggressiveRegression
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.LinearPassiveAggressiveRegression
getPredictionFunction() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.PassiveAggressiveRegression
getPredictionFunction() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.regression.RegressionLearningAlgorithm
Returns the regressor learned during the training process
getpReg() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
getPreLeafNodes(int) - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
Returns all the nodes that have at least a generationHops
-generation descendant being a leaf
(for instance using generationHops
=1 will produce a list of all the fathers of the leaves,
generationHops
=2 will produce a list of all the grandfathers of the leaves, etc)
getPrevious() - Method in class it.uniroma2.sag.kelp.data.representation.sequence.SequenceElement
Returns the previous element in the sequence
getProduction() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Get the node production in the form of string.
getProductionIgnoringLeaves() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Get the node production in the form of string.
getProjectionMatrix() - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
getProperty() - Method in class it.uniroma2.sag.kelp.data.label.NumericLabel
Returns the property
getPurity(ClusterList) - Static method in class it.uniroma2.sag.kelp.utils.evaluation.ClusteringEvaluator
getQCKernelFunction(SimpleDataset, SimpleDataset, String) - Static method in class it.uniroma2.sag.kelp.examples.demo.qc.QuestionClassification
Get one of the kernel functions used in the Question Classification
examples.
getRandExample() - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
getRandExample() - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getRandExamples(int) - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
getRandExamples(int) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getRandomSeed() - Method in class it.uniroma2.sag.kelp.data.dataset.selector.RandomExampleSelector
getRank() - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
getRanks() - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
getRecall() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
Return the recall of the positive class
getRecallFor(Label) - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the recall for the specified label
getRegressionLabels() - Method in class it.uniroma2.sag.kelp.data.example.Example
Returns the classificationLabels of this example
getRegressionProperties() - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Returns all the regression properties in the dataset.
getRegressionProperties() - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getRegressionValue(Label) - Method in class it.uniroma2.sag.kelp.data.example.Example
Returns the numeric value associated to a label
getRegressionValues() - Method in class it.uniroma2.sag.kelp.data.example.Example
getRepresentation(String) - Method in class it.uniroma2.sag.kelp.data.example.Example
Returns the representation corresponding to
representationName
getRepresentation(String) - Method in class it.uniroma2.sag.kelp.data.example.SimpleExample
getRepresentation() - Method in class it.uniroma2.sag.kelp.kernel.DirectKernel
getRepresentation() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
getRepresentation() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLinearLearningAlgorithm
getRepresentation() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
getRepresentation() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.LinearPassiveAggressiveClassification
getRepresentation() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
getRepresentation() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.LinearPerceptron
getRepresentation() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
getRepresentation() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.LinearMethod
Returns the representation this learning algorithm exploits
getRepresentation() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
getRepresentation() - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.LinearPassiveAggressiveRegression
getRepresentation() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryLinearModel
getRepresentationIdentifier(Class<? extends Representation>) - Static method in class it.uniroma2.sag.kelp.data.representation.RepresentationFactory
Returns the identifier of a given class
getRepresentationName() - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorLinear
getRepresentationName() - Method in class it.uniroma2.sag.kelp.data.representation.tree.utils.SelectRepresentationFromExample
getRepresentationName() - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
getRepresentations() - Method in class it.uniroma2.sag.kelp.data.example.Example
Returns the example representations
getRepresentations() - Method in class it.uniroma2.sag.kelp.data.example.SimpleExample
getRepresentationToBeEnriched() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.dilation.CompositionalNodeSimilarityDilation
getRepresentationToBeEnriched() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.product.CompositionalNodeSimilarityProduct
getRepresentationToBeEnriched() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.sum.CompositionalNodeSimilaritySum
getRho() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
getRightExample() - Method in class it.uniroma2.sag.kelp.data.example.ExamplePair
Returns the right example in the pair
getRoot() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
getRoot() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getScore() - Method in class it.uniroma2.sag.kelp.data.example.SequencePath
getScore(CompositionalStructureElement, CompositionalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
getScore(CompositionalStructureElement, CompositionalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.dilation.CompositionalNodeSimilarityDilation
getScore(CompositionalStructureElement, CompositionalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.product.CompositionalNodeSimilarityProduct
getScore(CompositionalStructureElement, CompositionalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.sum.CompositionalNodeSimilaritySum
getScore(Label) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryMarginClassifierOutput
getScore(Label) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassificationOutput
getScore(Label) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassificationOutput
getScore(Label) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassificationOutput
getScore(Label) - Method in interface it.uniroma2.sag.kelp.predictionfunction.Prediction
Return the prediction score associated to a given label
getScore(Label) - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateRegressionOutput
getScore(Label) - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePrediction
getScwType() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
getSecond() - Method in exception it.uniroma2.sag.kelp.data.representation.vector.exception.VectorOperationException
getSeed() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
getSequenceExampleGenerator() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
getSequenceExampleGenerator() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.SequenceModel
getSequenceExamples() - Method in class it.uniroma2.sag.kelp.data.dataset.SequenceDataset
getShuffledDataset() - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
getShuffledDataset() - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getSimilarity(Vector, Vector) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.VectorBasedStructureElementSimilarity
Returns the similarity between vector1
and vector2
computed using the kernel function
getSimilarity(TreeNode, TreeNode) - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.similarity.ContentBasedTreeNodeSimilarity
getSimilarity(TreeNode, TreeNode) - Method in interface it.uniroma2.sag.kelp.data.representation.tree.node.similarity.TreeNodeSimilarity
Returns the similarity between nodeA
and nodeB
getSimilarityThreshold() - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
getSize() - Method in class it.uniroma2.sag.kelp.kernel.cache.FixIndexSquaredNormCache
Returns the size of the cache, i.e.
getSquaredNorm() - Method in interface it.uniroma2.sag.kelp.data.representation.Normalizable
Returns the squared norm of this vector
getSquaredNorm() - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
getSquaredNorm() - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
getSquaredNorm(Example) - Method in class it.uniroma2.sag.kelp.kernel.cache.DynamicIndexSquaredNormCache
getSquaredNorm(Example) - Method in class it.uniroma2.sag.kelp.kernel.cache.FixIndexSquaredNormCache
getSquaredNorm(Example) - Method in interface it.uniroma2.sag.kelp.kernel.cache.SquaredNormCache
Returns a previously stored norm of a given example
getSquaredNorm(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
getSquaredNorm() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
getSquaredNorm(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryLinearModel
getSquaredNorm() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryLinearModel
getSquaredNorm(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryModel
Computes the squared norm of a given example according to the space in which the model
is operating
getSquaredNorm() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryModel
Computes the squared norm of the hyperplane this model is based on
getSquaredNormCache() - Method in class it.uniroma2.sag.kelp.kernel.Kernel
Returns the cache in which storing the squared norms in the RKHS defined
by this kernel
getStandardDeviation(float[]) - Static method in class it.uniroma2.sag.kelp.utils.Math
Estimates the unbiased standard deviation \(\sigma\) of population using some samples
\(x_1, \ldots x_n\) whose estimated mean is \(\bar{x}\)
getStatistics(ClusterList) - Static method in class it.uniroma2.sag.kelp.utils.evaluation.ClusteringEvaluator
getStoredKernelValue(Example, Example) - Method in class it.uniroma2.sag.kelp.kernel.cache.DynamicIndexKernelCache
Deprecated.
getStoredKernelValue(Example, Example) - Method in class it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache
Deprecated.
getStoredKernelValue(Example, Example) - Method in class it.uniroma2.sag.kelp.kernel.cache.FixSizeKernelCache
getStoredKernelValue(Example, Example) - Method in class it.uniroma2.sag.kelp.kernel.cache.KernelCache
Retrieves in the cache the kernel operation between two examples
getStoredKernelValue(Example, Example) - Method in class it.uniroma2.sag.kelp.kernel.cache.SimpleDynamicKernelCache
getStoredKernelValue(Example, Example) - Method in class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
getStructureElementIdentifier(Class<? extends StructureElement>) - Static method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElementFactory
Returns the identifier of a given class
getSupportVector(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
Returns the support vector associated to a given instance, null the instance
is not a support vector in this model
getSupportVectorIndex(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
Returns the index of the vector associated to a given instance, null the instance
is not a support vector in this model
getSupportVectors() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
Returns all the support vectors
getSyntacticRelation() - Method in class it.uniroma2.sag.kelp.data.representation.structure.SyntacticStructureElement
getTerminalFactor() - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
Get the Terminal Factor
getTerminalFactor() - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.graph.DirectedGraphRepresentation
getTextFromData() - Method in interface it.uniroma2.sag.kelp.data.representation.Representation
Returns a textual representation of the data stored in this
representation
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.sequence.SequenceRepresentation
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.string.StringRepresentation
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.structure.LexicalStructureElement
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.structure.PosStructureElement
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElement
Returns a textual representation of the data stored in this
structureElement
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.structure.SyntacticStructureElement
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.structure.UntypedStructureElement
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
getTextFromData() - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
getTextFromDataWithAdditionalInfo() - Method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElement
Returns the textual format of the content, concatenated with all the
additional information added to this element
getTextualEnrichedFormat() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
getTextualEnrichedTree() - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
getTextualLabelPart() - Method in class it.uniroma2.sag.kelp.data.example.Example
getTextualRepresentation(Representation) - Static method in class it.uniroma2.sag.kelp.data.example.ExampleFactory
getTextualRepresentation(Representation, String) - Static method in class it.uniroma2.sag.kelp.data.example.ExampleFactory
getTextualRepresentation(StructureElement) - Static method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElementFactory
getTn() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
Return the true negatives
getTnFor(Label) - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the true negatives for the specified label
getToCombine() - Method in class it.uniroma2.sag.kelp.kernel.KernelCombination
Returns a list of the kernels this kernel is combining
getToCombine() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.EnsembleLearningAlgorithm
Returns a list of the learning algorithm this ensemble method is combining
getTp() - Method in class it.uniroma2.sag.kelp.utils.evaluation.BinaryClassificationEvaluator
Return the true positives
getTpFor(Label) - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Return the true positives for the specified label
getTransitionRepresentationName() - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorKernel
getTransitionsOrder() - Method in interface it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGenerator
getTransitionsOrder() - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorKernel
getTransitionsOrder() - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorLinear
getTransitionsOrder() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
getTransitionWeight() - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorLinear
getUpper_bound_n() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
getUpper_bound_p() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
getValue() - Method in class it.uniroma2.sag.kelp.data.label.NumericLabel
Returns the value of the value
getValue() - Method in interface it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.LibLinearFeature
getValue() - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.LibLinearFeatureNode
getVariance(float[]) - Static method in class it.uniroma2.sag.kelp.utils.Math
Estimates the unbiased sample variance \(\sigma^2\) of population using some samples
\(x_1, \ldots x_n\) whose estimated mean is \(\bar{x}\)
getVector() - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
getVector(String) - Method in class it.uniroma2.sag.kelp.wordspace.Wordspace
getVector(String) - Method in interface it.uniroma2.sag.kelp.wordspace.WordspaceI
Returns the vector associated to the given word
getW(double[]) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.Problem
getWeight() - Method in class it.uniroma2.sag.kelp.predictionfunction.model.SupportVector
getWeights() - Method in class it.uniroma2.sag.kelp.kernel.standard.LinearKernelCombination
getWordCounter() - Static method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
getWordspace() - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.VectorBasedStructureElementSimilarity
Returns the wordspace from which the vectors associated to a word must be retrieved
getZeroVector(String) - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Returns a zero vector compliant with the representation identifier by representationIdentifier
containing all zeros
getZeroVector(String) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
getZeroVector() - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
getZeroVector() - Method in interface it.uniroma2.sag.kelp.data.representation.Vector
Returns a vector whose values are all 0.
getZeroVector() - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
getZeroVector() - Method in class it.uniroma2.sag.kelp.wordspace.Wordspace
getZeroVector() - Method in interface it.uniroma2.sag.kelp.wordspace.WordspaceI
Returns the zero vector in the wordspace, i.e, a zero vector having the worspace dimensionality
grad(double[], double[]) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.L2R_L2_SvcFunction
grad(double[], double[]) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.L2R_L2_SvrFunction
GraphNode - Class in it.uniroma2.sag.kelp.data.representation.graph
This class implements a graph node
GraphNode(int, StructureElement) - Constructor for class it.uniroma2.sag.kelp.data.representation.graph.GraphNode
Initializes a graph node
GraphUtils - Class in it.uniroma2.sag.kelp.data.representation.graph
This class contains some useful methods operating on graphs
GraphUtils() - Constructor for class it.uniroma2.sag.kelp.data.representation.graph.GraphUtils
l - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.Problem
the number of training data
l - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
Total number of Support Vectors
L2R_L2_SvcFunction - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver
NOTE: This code has been adapted from the Java port of the original LIBLINEAR
C++ sources.
L2R_L2_SvcFunction(Problem, double[]) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.L2R_L2_SvcFunction
L2R_L2_SvrFunction - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver
NOTE: This code has been adapted from the Java port of the original LIBLINEAR
C++ sources.
L2R_L2_SvrFunction(Problem, double[], double) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.L2R_L2_SvrFunction
Label - Interface in it.uniroma2.sag.kelp.data.label
A generic Label for supervised learning.
label - Variable in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
label - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
The label to be learned by the classifier
label - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
label - Variable in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
LABEL_SEPARATOR - Static variable in class it.uniroma2.sag.kelp.data.example.ExampleFactory
LabelFactory - Class in it.uniroma2.sag.kelp.data.label
It is a factory that provides methods for instantiating labels described in a
textual format
LabelFactory() - Constructor for class it.uniroma2.sag.kelp.data.label.LabelFactory
labelPrefix - Variable in class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeThresholdAndDistanceFromSpecificLabelledNode
labels - Variable in class it.uniroma2.sag.kelp.predictionfunction.model.MulticlassModel
labels - Variable in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
LabelTypeResolver - Class in it.uniroma2.sag.kelp.data.label
It is a class implementing TypeIdResolver
which will be used by Jackson library during
the serialization in JSON and deserialization of Label
s
LabelTypeResolver() - Constructor for class it.uniroma2.sag.kelp.data.label.LabelTypeResolver
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
learn(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryCSvmClassification
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryNuSvmClassification
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.OneClassSvmClassification
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.MultiLabelClassificationLearning
This method will cause the meta-learning algorithm to learn
N classifiers, where N is the number of classes in the dataset.
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsAllLearning
This method will cause the meta-learning algorithm to learn
N classifiers, where N is the number of classes in the dataset.
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsOneLearning
This method will cause the meta-learning algorithm to learn
N*(N-1)/2 classifiers, where N is the number of classes in the dataset.
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
learn(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
learn(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
learn(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
learn(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
learn(Dataset) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.LearningAlgorithm
It starts the training process exploiting the provided dataset
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.MultiEpochLearning
learn(Example) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.OnlineLearningAlgorithm
Applies the learning process on a single example, updating its current model
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
learn(Dataset) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.PassiveAggressiveRegression
learn(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.PassiveAggressiveRegression
Learn - Class in it.uniroma2.sag.kelp.main
Learn() - Constructor for class it.uniroma2.sag.kelp.main.Learn
LearningAlgorithm - Interface in it.uniroma2.sag.kelp.learningalgorithm
It is a generic Machine Learning algorithm
LearningAlgorithmTypeResolver - Class in it.uniroma2.sag.kelp.learningalgorithm
It is a class implementing TypeIdResolver
which will be used by Jackson library during
the serialization in JSON and deserialization of LearningAlgorithm
s
LearningAlgorithmTypeResolver() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.LearningAlgorithmTypeResolver
LexicalStructureElement - Class in it.uniroma2.sag.kelp.data.representation.structure
It represent a StuctureElement that contains lexical information, i.e.
LexicalStructureElement() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.LexicalStructureElement
LexicalStructureElement(String, String) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.LexicalStructureElement
LexicalStructureElementFilter - Class in it.uniroma2.sag.kelp.data.representation.structure.filter
This implementation of StructureElementFilter
selects only LexicalStructureElements whose
lemma is not a stopword and whose pos is among the set of posOfInterest
LexicalStructureElementFilter(Set<String>, Set<String>) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.filter.LexicalStructureElementFilter
Constructor for LexicalStructureElementFilter
LexicalStructureElementManipulator - Class in it.uniroma2.sag.kelp.data.manipulator
This class implements functions to enrich LexicalStructureElement
s with a vector from the Word Space.
LexicalStructureElementManipulator(WordspaceI, String, String) - Constructor for class it.uniroma2.sag.kelp.data.manipulator.LexicalStructureElementManipulator
LexicalStructureElementManipulator(WordspaceI, String) - Constructor for class it.uniroma2.sag.kelp.data.manipulator.LexicalStructureElementManipulator
LexicalStructureElementSimilarity - Class in it.uniroma2.sag.kelp.data.representation.structure.similarity
This class implements a similarity function between
StructureElement
s.
LexicalStructureElementSimilarity() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.LexicalStructureElementSimilarity
LexicalStructureElementSimilarity(WordspaceI) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.LexicalStructureElementSimilarity
LibCSvmSolver - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver
This class implements the solver of the C-SVM quadratic problem described in
[CC Chang & CJ Lin, 2011].
LibCSvmSolver(Kernel, float, float) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibCSvmSolver
LibCSvmSolver() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibCSvmSolver
LibLinearFeature - Interface in it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver
NOTE: This code has been adapted from the Java port of the original LIBLINEAR
C++ sources.
LibLinearFeatureNode - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver
NOTE: This code has been adapted from the Java port of the original LIBLINEAR
C++ sources.
LibLinearFeatureNode(int, double) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.LibLinearFeatureNode
LibLinearLearningAlgorithm - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear
This class implements linear SVMs models trained using a coordinate descent
algorithm [Fan et al, 2008].
LibLinearLearningAlgorithm(Label, double, double, String) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
LibLinearLearningAlgorithm(Label, double, double, boolean, String) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
LibLinearLearningAlgorithm(double, double, String) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
LibLinearLearningAlgorithm() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
LibLinearRegression - Class in it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear
This class implements linear SVM regression trained using a coordinate descent
algorithm [Fan et al, 2008].
LibLinearRegression(Label, double, double, String) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
LibLinearRegression(double, double, String) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
LibLinearRegression() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
LibNuSvmSolver - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver
It is the instance of a solution provided the \(\nu\)-SVM solver of the
optimization problem.
LibNuSvmSolver(Kernel, int, int) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibNuSvmSolver
LibNuSvmSolver() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibNuSvmSolver
LibsvmDatasetReader - Class in it.uniroma2.sag.kelp.data.dataset
A utility class to read dataset in the libsvm/liblinear/svmLight format.
LibsvmDatasetReader(String, String) - Constructor for class it.uniroma2.sag.kelp.data.dataset.LibsvmDatasetReader
Constructor for reading dataset in libsvm/liblinear/svmLight format for classification tasks.
LibsvmDatasetReader(String, String, StringLabel) - Constructor for class it.uniroma2.sag.kelp.data.dataset.LibsvmDatasetReader
Constructor for reading dataset in libsvm/liblinear/svmLight format for regression tasks.
LibSvmSolver - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver
This class implements the solver of the SVM quadratic problem described in
[CC Chang & CJ Lin, 2011].
LibSvmSolver() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
LibSvmSolver(Kernel, float, float) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
LibSvmSolver.Pair - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver
The pair of indices i and j that are selected as working set
LibSvmSolver.Pair() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver.Pair
LINEAR_REP_NAME - Static variable in class it.uniroma2.sag.kelp.examples.demo.nystrom.NystromExampleMain
LinearizationFunction - Interface in it.uniroma2.sag.kelp.linearization
This interface allows implementing function to linearized examples through
linear representations, i.e.
linearizeByEnsembleAndJuxtaposition(Example, String) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
Given an example, this method produces a new Example
containing a single representation, i.e.
LinearKernel - Class in it.uniroma2.sag.kelp.kernel.vector
Linear Kernel for Vector
s
It executes the dot product between two Vector
representations
LinearKernel(String) - Constructor for class it.uniroma2.sag.kelp.kernel.vector.LinearKernel
LinearKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.vector.LinearKernel
LinearKernelCombination - Class in it.uniroma2.sag.kelp.kernel.standard
Weighted Linear Combination of Kernels
Given the kernels \(K_1 \ldots K_n\), with weights \(c_1 \ldots c_n\), the combination formula is:
\(\sum_{i}c_iK_i\)
LinearKernelCombination() - Constructor for class it.uniroma2.sag.kelp.kernel.standard.LinearKernelCombination
LinearKMeansCluster - Class in it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans
It is the instance of a Cluster for Linear Algorithms, intended as a set of
objects, instantiated as Examples, grouped together according to a measure of
similarity.
LinearKMeansCluster() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansCluster
LinearKMeansCluster(String) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansCluster
LinearKMeansClusteringExample - Class in it.uniroma2.sag.kelp.examples.demo.clustering
This class contains an example of the usage of the Linear K-means clustering.
LinearKMeansClusteringExample() - Constructor for class it.uniroma2.sag.kelp.examples.demo.clustering.LinearKMeansClusteringExample
LinearKMeansEngine - Class in it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans
Implements the K-means Clustering Algorithm, that works on an Explicit
feature Space.
LinearKMeansEngine() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
LinearKMeansEngine(String, int, int) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
LinearKMeansExample - Class in it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans
LinearKMeansExample() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansExample
LinearKMeansExample(Example, float) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansExample
LinearMethod - Interface in it.uniroma2.sag.kelp.learningalgorithm
It is a linear algorithm operating directly on an explicit vector space
LinearPassiveAggressiveClassification - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive
Online Passive-Aggressive Learning Algorithm for classification tasks (linear version) .
LinearPassiveAggressiveClassification() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.LinearPassiveAggressiveClassification
LinearPassiveAggressiveClassification(float, float, PassiveAggressiveClassification.Loss, PassiveAggressive.Policy, String, Label) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.LinearPassiveAggressiveClassification
LinearPassiveAggressiveRegression - Class in it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive
Online Passive-Aggressive Learning Algorithm for regression tasks (linear version).
LinearPassiveAggressiveRegression() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.LinearPassiveAggressiveRegression
LinearPassiveAggressiveRegression(float, float, PassiveAggressive.Policy, String, Label) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.LinearPassiveAggressiveRegression
LinearPerceptron - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron
The perceptron learning algorithm algorithm for classification tasks (linear version).
LinearPerceptron() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.LinearPerceptron
LinearPerceptron(float, float, boolean, String, Label) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.LinearPerceptron
load(String) - Static method in class it.uniroma2.sag.kelp.kernel.Kernel
Load a kernel function from a file path.
load(String) - Static method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
Load a Nystrom-based projection function from a file
load(String) - Static method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
Load an Ensemble of Nystrom projectors saved on file.
logger - Variable in class it.uniroma2.sag.kelp.data.example.SimpleExample
logIteration - Static variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
The number of iteration to be accomplished to print info in the standard
output
loss - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
LRB - Static variable in class it.uniroma2.sag.kelp.data.representation.tree.utils.TreeIO
The left parenthesis character within the tree
p - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
PAIR_SEPARATOR - Static variable in class it.uniroma2.sag.kelp.data.example.ExampleFactory
PairSimilarityExtractor - Class in it.uniroma2.sag.kelp.data.manipulator
This manipulator manipulates ExamplePair
object extracting some similarity scores between the
left and the right examples of the pair.
PairSimilarityExtractor(String, Kernel...) - Constructor for class it.uniroma2.sag.kelp.data.manipulator.PairSimilarityExtractor
PairwiseProductKernel - Class in it.uniroma2.sag.kelp.kernel.pairs
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) \cdot BK(x_2, y_2) + BK(x_1, y_2) \cdot BK(x_2, y_1)\)
where BK is another kernel the kernel on pairs relies on.
PairwiseProductKernel(Kernel, boolean) - Constructor for class it.uniroma2.sag.kelp.kernel.pairs.PairwiseProductKernel
Defines a Kernel operating on pairs that applies the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) \cdot BK(x_2, y_2) + BK(x_1, y_2) \cdot BK(x_2, y_1)\)
PairwiseProductKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.pairs.PairwiseProductKernel
PairwiseSumKernel - Class in it.uniroma2.sag.kelp.kernel.pairs
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2) + BK(x_1, y_2) + BK(x_2, y_1)\)
where BK is another kernel the kernel on pairs relies on.
PairwiseSumKernel(Kernel, boolean) - Constructor for class it.uniroma2.sag.kelp.kernel.pairs.PairwiseSumKernel
Defines a Kernel operating on pairs that applies the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2) + BK(x_1, y_2) + BK(x_2, y_1)\)
PairwiseSumKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.pairs.PairwiseSumKernel
parseCharniakSentence(String) - Method in class it.uniroma2.sag.kelp.data.representation.tree.utils.TreeIO
This method allows to read a tree in the form (S(NP)(VP)) and returns the TreeNode
corresponding to the root of the tree
parseExample(String) - Static method in class it.uniroma2.sag.kelp.data.example.ExampleFactory
parseLabel(String) - Static method in class it.uniroma2.sag.kelp.data.label.LabelFactory
Initializes and returns the label described in
labelDescription
parseNode(int, String, TreeNode) - Method in class it.uniroma2.sag.kelp.data.representation.tree.utils.TreeIO
parseRepresentation(String, String) - Method in class it.uniroma2.sag.kelp.data.representation.RepresentationFactory
Initializes and returns the representation described in
representationBody
parseSingleRepresentation(String) - Static method in class it.uniroma2.sag.kelp.data.example.ExampleFactory
Parse a single Representation
from its string representation
parseStructureElement(String, String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElementFactory
Initializes and returns the structureElement described in
structureElementBody
parseStructureElement(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElementFactory
ParsingExampleException - Exception in it.uniroma2.sag.kelp.data.example
An Exception to model problems when parsing examples
ParsingExampleException(String) - Constructor for exception it.uniroma2.sag.kelp.data.example.ParsingExampleException
ParsingExampleException(Exception, String) - Constructor for exception it.uniroma2.sag.kelp.data.example.ParsingExampleException
PartialTreeKernel - Class in it.uniroma2.sag.kelp.kernel.tree
Partial Tree Kernel implementation.
PartialTreeKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
Default constructor.
PartialTreeKernel(float, float, float, String) - Constructor for class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
A Constructor for the Partial Tree Kernel in which parameters can be set
manually.
PartialTreeKernel(String) - Constructor for class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
This constructor by default uses lambda=0.4, mu=0.4, terminalFactor=1
PassiveAggressive - Class in it.uniroma2.sag.kelp.learningalgorithm
It is an online learning algorithms that implements the Passive Aggressive algorithms described in
[Crammer, JMLR2006] K.
PassiveAggressive() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
PassiveAggressive.Policy - Enum in it.uniroma2.sag.kelp.learningalgorithm
It is the updating policy applied by the Passive Aggressive Algorithm when a miss-prediction occurs
PassiveAggressiveClassification - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive
Online Passive-Aggressive Learning Algorithm for classification tasks.
PassiveAggressiveClassification() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
PassiveAggressiveClassification.Loss - Enum in it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive
PassiveAggressiveRegression - Class in it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive
Online Passive-Aggressive Learning Algorithm for regression tasks.
PassiveAggressiveRegression() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.PassiveAggressiveRegression
PegasosLearningAlgorithm - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos
It implements the Primal Estimated sub-GrAdient SOlver (PEGASOS) for SVM.
PegasosLearningAlgorithm() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
PegasosLearningAlgorithm(int, float, int, String, Label) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
Perceptron - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron
The perceptron learning algorithm algorithm for classification tasks.
Perceptron() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
phi - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
Phi is the standard score computed from the confidence.
pointWiseProduct(Vector) - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
pointWiseProduct(Vector) - Method in interface it.uniroma2.sag.kelp.data.representation.Vector
Compute the point-wise product of this vector with the one in
vector
.
pointWiseProduct(Vector) - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
policy - Variable in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
PolynomialKernel - Class in it.uniroma2.sag.kelp.kernel.standard
PolynomialKernel(float, float, float, Kernel) - Constructor for class it.uniroma2.sag.kelp.kernel.standard.PolynomialKernel
PolynomialKernel(float, Kernel) - Constructor for class it.uniroma2.sag.kelp.kernel.standard.PolynomialKernel
PolynomialKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.standard.PolynomialKernel
populate(String) - Method in class it.uniroma2.sag.kelp.data.dataset.SequenceDataset
populate(String) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
Populate the dataset by reading it from a KeLP
compliant file.
populate(DatasetReader) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
Populate the dataset using the provided reader
POS_LEMMA_SEPARATOR - Static variable in class it.uniroma2.sag.kelp.data.representation.structure.LexicalStructureElement
positiveClass - Variable in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryClassifier
PosStructureElement - Class in it.uniroma2.sag.kelp.data.representation.structure
It represent a StuctureElement that contains Part-of-Speech , i.e.
PosStructureElement() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.PosStructureElement
PosStructureElement(String) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.PosStructureElement
pow(float, int) - Static method in class it.uniroma2.sag.kelp.utils.Math
It evaluates the power of a number
precision - Variable in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator.ClassStats
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryClassifier
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryKernelMachineClassifier
Classifies an example applying the following formula:
y(x) = \sum_{i \in SV}\alpha_i k(x_i, x) + b
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryLinearClassifier
predict(Example) - Method in interface it.uniroma2.sag.kelp.predictionfunction.classifier.Classifier
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassifier
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassifier
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassifier
predict(Example) - Method in interface it.uniroma2.sag.kelp.predictionfunction.PredictionFunction
predict(Example) - Method in interface it.uniroma2.sag.kelp.predictionfunction.regressionfunction.RegressionFunction
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateKernelMachineRegressionFunction
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateLinearRegressionFunction
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateRegressionFunction
predict(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
predictAndLearnWithAvailableBudget(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
predictAndLearnWithAvailableBudget(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.RandomizedBudgetPerceptron
predictAndLearnWithAvailableBudget(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
predictAndLearnWithAvailableBudget(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
predictAndLearnWithFullBudget(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
Learns from a single example applying a specific policy that must be adopted when the budget is reached
predictAndLearnWithFullBudget(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.RandomizedBudgetPerceptron
predictAndLearnWithFullBudget(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
predictAndLearnWithFullBudget(Example) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
Prediction - Interface in it.uniroma2.sag.kelp.predictionfunction
It is a generic output provided by a machine learning systems on a test data
PredictionFunction - Interface in it.uniroma2.sag.kelp.predictionfunction
It is a generic prediction function that can be learned with a machine learning algorithm
PredictionFunctionTypeResolver - Class in it.uniroma2.sag.kelp.predictionfunction
It is a class implementing TypeIdResolver
which will be used by Jackson library during
the serialization in JSON and deserialization of PredictionFunction
s
PredictionFunctionTypeResolver() - Constructor for class it.uniroma2.sag.kelp.predictionfunction.PredictionFunctionTypeResolver
PreferenceKernel - Class in it.uniroma2.sag.kelp.kernel.pairs
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2) - BK(x_1, y_2) - BK(x_2, y_1)\)
where BK is another kernel the preference kernel relies on.
PreferenceKernel(Kernel) - Constructor for class it.uniroma2.sag.kelp.kernel.pairs.PreferenceKernel
PreferenceKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.pairs.PreferenceKernel
printCounters(Label) - Method in class it.uniroma2.sag.kelp.utils.evaluation.MulticlassClassificationEvaluator
Print the counters of the specified Label l.
printExample(String...) - Method in class it.uniroma2.sag.kelp.data.example.SimpleExample
prob - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.L2R_L2_SvcFunction
Problem - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver
Describes the problem
Problem(Dataset, String, Label, Problem.LibLinearSolverType) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.Problem
Problem.LibLinearSolverType - Enum in it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver
productionBasedDeltaFunction(TreeNode, TreeNode, int, float, DeltaMatrix) - Static method in class it.uniroma2.sag.kelp.kernel.tree.TreeKernelUtils
Delta Function for tree kernels operation at production level, like
SubTreeKernel and SubSetTreeKernel.
property - Variable in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateRegressionFunction
PruneNodeIfLeaf - Class in it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner
Prune a node if it is a leaf.
PruneNodeIfLeaf() - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeIfLeaf
PruneNodeLeafNumber - Class in it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner
This strategy keeps the first numberOfLeavesToKeep
leaves and
discard all subsequent ones.
PruneNodeLeafNumber(int) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeLeafNumber
PruneNodeLowerThanThreshold - Class in it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner
Prune a node if the absolute value of the field weightfield
(default value "weight") is lower than threshold
.
PruneNodeLowerThanThreshold(double, String, boolean, double) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeLowerThanThreshold
PruneNodeLowerThanThreshold(double) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeLowerThanThreshold
PruneNodeLowerThanThreshold.nodeComparisonOperator - Enum in it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner
PruneNodeNumberOfChildren - Class in it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner
This pruning strategy makes sure that a node does not have more than
maxNumberOfChildren
children.
PruneNodeNumberOfChildren(int) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeNumberOfChildren
pruneNodes(TreeNode) - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.NodePruner
given a node, prunes any of the descendant nodes
pruneNodes(TreeNode) - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeNumberOfChildren
PruneNodeThresholdAndDistanceFromSpecificLabelledNode - Class in it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner
Prune a node if the following conditions are met:
1) there is no node at distance not greater than distance
whose
label starts with the prefix labelPrefix
2) the conditions specified in the parent class
PruneNodeThresholdAndDistanceFromSpecificLabelledNode(double, String, boolean, double, String, int) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeThresholdAndDistanceFromSpecificLabelledNode
PruneNodeThresholdAndDistanceFromSpecificLabelledNode(double, String) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeThresholdAndDistanceFromSpecificLabelledNode
pruneTree(TreeRepresentation) - Method in class it.uniroma2.sag.kelp.data.manipulator.TreeNodePruner
SameAdditionalInfoStructureElementSimilarity - Class in it.uniroma2.sag.kelp.data.representation.structure.similarity
Implements a similarity between StructureElements that first verifies whether
two structure elements contains the same additional informations in a list of
specified additional informations.
SameAdditionalInfoStructureElementSimilarity() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.SameAdditionalInfoStructureElementSimilarity
SameAdditionalInfoStructureElementSimilarity(List<String>, StructureElementSimilarityI) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.SameAdditionalInfoStructureElementSimilarity
save(String) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
Save the dataset in a file.
save(Kernel, String) - Static method in class it.uniroma2.sag.kelp.kernel.Kernel
Save the input kernel in a file.
save(String) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
Save a Nystrom-based projection function in a file.
save(String) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethodEnsemble
Save an Ensemble of Nystrom projectors on file.
scale(float) - Method in interface it.uniroma2.sag.kelp.data.representation.Normalizable
Multiplies each element of this representation by coeff
scale(float) - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
scale(float) - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
SCWType - Enum in it.uniroma2.sag.kelp.learningalgorithm.classification.scw
The two types of Soft Confidence-Weighted implemented variants
select(Dataset) - Method in interface it.uniroma2.sag.kelp.data.dataset.selector.ExampleSelector
This function allows to select a subset of Example
s from the
input Dataset
select(Dataset) - Method in class it.uniroma2.sag.kelp.data.dataset.selector.FirstExamplesSelector
select(DatasetReader) - Method in class it.uniroma2.sag.kelp.data.dataset.selector.FirstExamplesSelector
This function allows to select a subset of Example
s from the
input DatasetReader
select(Dataset) - Method in class it.uniroma2.sag.kelp.data.dataset.selector.RandomExampleSelector
select_working_set(LibSvmSolver.Pair) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibCSvmSolver
select_working_set(LibSvmSolver.Pair) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibNuSvmSolver
select_working_set(LibSvmSolver.Pair) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
Select the working set in each iteration.
SelectRepresentationFromExample - Class in it.uniroma2.sag.kelp.data.representation.tree.utils
SelectRepresentationFromExample(String, SelectRepresentationFromExample.representationSelectorInExample) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.utils.SelectRepresentationFromExample
SelectRepresentationFromExample(String) - Constructor for class it.uniroma2.sag.kelp.data.representation.tree.utils.SelectRepresentationFromExample
SelectRepresentationFromExample.representationSelectorInExample - Enum in it.uniroma2.sag.kelp.data.representation.tree.utils
SEPARATOR - Static variable in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
SEQDELIM - Static variable in class it.uniroma2.sag.kelp.data.example.SequenceExample
This delimiter is used in the construction of artificial features
representing transitions for the
SequenceClassificationLearningAlgorithm
SEQDELIM - Static variable in class it.uniroma2.sag.kelp.data.example.SequencePath
This delimiter is used in the construction of artificial features
representing transitions for the
SequenceClassificationLearningAlgorithm
SequenceClassificationKernelBasedLearningAlgorithm - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.hmm
/** This class implements a sequential labeling paradigm.
SequenceClassificationKernelBasedLearningAlgorithm() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationKernelBasedLearningAlgorithm
SequenceClassificationKernelBasedLearningAlgorithm(BinaryLearningAlgorithm, int, float) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationKernelBasedLearningAlgorithm
SequenceClassificationLearningAlgorithm - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.hmm
This class implements a sequential labeling paradigm.
SequenceClassificationLearningAlgorithm() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
SequenceClassificationLinearLearningAlgorithm - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.hmm
This class implements a sequential labeling paradigm.
SequenceClassificationLinearLearningAlgorithm(BinaryLearningAlgorithm, int, float) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLinearLearningAlgorithm
SequenceDataset - Class in it.uniroma2.sag.kelp.data.dataset
A dataset made of SequenceExample
s
SequenceDataset() - Constructor for class it.uniroma2.sag.kelp.data.dataset.SequenceDataset
SequenceDatasetReader - Class in it.uniroma2.sag.kelp.data.dataset
The methods of this class allows to read SequenceExample
s from a
file
SequenceDatasetReader(String) - Constructor for class it.uniroma2.sag.kelp.data.dataset.SequenceDatasetReader
SequenceDatasetWriter - Class in it.uniroma2.sag.kelp.data.dataset
* The methods of this class allows to write SequenceExample
s
into a file
SequenceDatasetWriter(String) - Constructor for class it.uniroma2.sag.kelp.data.dataset.SequenceDatasetWriter
SequenceElement - Class in it.uniroma2.sag.kelp.data.representation.sequence
A SequenceElement is a generic element in a SequenceRepresentation
SequenceElement(StructureElement) - Constructor for class it.uniroma2.sag.kelp.data.representation.sequence.SequenceElement
SequenceElement(StructureElement, SequenceElement, SequenceElement) - Constructor for class it.uniroma2.sag.kelp.data.representation.sequence.SequenceElement
SequenceEmission - Class in it.uniroma2.sag.kelp.data.label
It represents the pair (class_label,emission_score) assigned to each element
in a sequence.
SequenceEmission(Label, float) - Constructor for class it.uniroma2.sag.kelp.data.label.SequenceEmission
SequenceExample - Class in it.uniroma2.sag.kelp.data.example
A SequenceExample
represents a sequence of Examples
s, each containing a set of Representation
s and a set of
Label
s.
SequenceExample() - Constructor for class it.uniroma2.sag.kelp.data.example.SequenceExample
SequenceExampleGenerator - Interface in it.uniroma2.sag.kelp.data.examplegenerator
A SequenceExampleGenerator
generates a copy of an input
Example
(reflecting an item in a SequenceExample
)
enriched with information derived from the s assigned to the previous
n
examples.
SequenceExampleGeneratorKernel - Class in it.uniroma2.sag.kelp.data.examplegenerator
A SequenceExampleGeneratorKernelBasedAlg
allows to
implicitly enrich a targeted Example
(reflecting an item
in a SequenceExample
) with information derived from the s
assigned to the previous n
examples.
SequenceExampleGeneratorKernel() - Constructor for class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorKernel
SequenceExampleGeneratorKernel(int, String) - Constructor for class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorKernel
SequenceExampleGeneratorLinear - Class in it.uniroma2.sag.kelp.data.examplegenerator
A SequenceExampleGeneratorLinearAlg
allows to explicitly
enrich a targeted Example
(reflecting an item in a
SequenceExample
) with information derived from the s
assigned to the previous n
examples.
SequenceExampleGeneratorLinear() - Constructor for class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorLinear
SequenceExampleGeneratorLinear(int, String, float) - Constructor for class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorLinear
SequenceExampleGeneratorTypeResolver - Class in it.uniroma2.sag.kelp.data.examplegenerator
It is a class implementing TypeIdResolver
which will be used by
Jackson library during the serialization in JSON and deserialization of
SequenceExamplesGenerator
s
SequenceExampleGeneratorTypeResolver() - Constructor for class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorTypeResolver
SequenceKernel - Class in it.uniroma2.sag.kelp.kernel.sequence
Sequence Kernel implementation.
SequenceKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.sequence.SequenceKernel
SequenceKernel(String, int, float) - Constructor for class it.uniroma2.sag.kelp.kernel.sequence.SequenceKernel
SequenceKernelExample - Class in it.uniroma2.sag.kelp.examples.main
This example illustrates how to use the sequence kernel on a
Sentiment Analysis task.
SequenceKernelExample() - Constructor for class it.uniroma2.sag.kelp.examples.main.SequenceKernelExample
SequenceLearningKernelMain - Class in it.uniroma2.sag.kelp.examples.demo.seqlearn
This class shows how to use a
SequenceClassificationLearningAlgorithm
.
SequenceLearningKernelMain() - Constructor for class it.uniroma2.sag.kelp.examples.demo.seqlearn.SequenceLearningKernelMain
SequenceLearningLinearMain - Class in it.uniroma2.sag.kelp.examples.demo.seqlearn
This class shows how to use a
SequenceClassificationLearningAlgorithm
.
SequenceLearningLinearMain() - Constructor for class it.uniroma2.sag.kelp.examples.demo.seqlearn.SequenceLearningLinearMain
SequenceModel - Class in it.uniroma2.sag.kelp.predictionfunction.model
This class implements a model produced by a
SequenceClassificationLearningAlgorithm
SequenceModel() - Constructor for class it.uniroma2.sag.kelp.predictionfunction.model.SequenceModel
SequenceModel(PredictionFunction, SequenceExampleGenerator) - Constructor for class it.uniroma2.sag.kelp.predictionfunction.model.SequenceModel
SequencePath - Class in it.uniroma2.sag.kelp.data.example
This class defines the output of a sequence labeling process.
SequencePath() - Constructor for class it.uniroma2.sag.kelp.data.example.SequencePath
SequencePrediction - Class in it.uniroma2.sag.kelp.predictionfunction
It is a output provided by a machine learning systems on a sequence.
SequencePrediction() - Constructor for class it.uniroma2.sag.kelp.predictionfunction.SequencePrediction
SequencePredictionFunction - Class in it.uniroma2.sag.kelp.predictionfunction
This class implements a classifier in a sequence labeling process.
SequencePredictionFunction() - Constructor for class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
SequencePredictionFunction(SequenceModel) - Constructor for class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
SequenceRepresentation - Class in it.uniroma2.sag.kelp.data.representation.sequence
Sequence Representation used for example to represent a sentence (i.e.
SequenceRepresentation() - Constructor for class it.uniroma2.sag.kelp.data.representation.sequence.SequenceRepresentation
SerializationExample - Class in it.uniroma2.sag.kelp.examples.main
This example illustrates how to serialize and deserialize learning algorithms, as well as
classification functions.
SerializationExample() - Constructor for class it.uniroma2.sag.kelp.examples.main.SerializationExample
setA(float) - Method in class it.uniroma2.sag.kelp.kernel.standard.PolynomialKernel
setAdditionalInfos(List<String>) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.SameAdditionalInfoStructureElementSimilarity
Sets the list of additionalInfos two structure elements must
both have or not have in order to have a non zero similarity
setAllowDifferentPOS(boolean) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.LexicalStructureElementSimilarity
Sets whether the similarity between words having different Part-of-Speech is allowed
or if it must be set to 0
setAlpha(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
Sets the learning rate, i.e.
setAlphas(float[]) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
setAssignedSequenceLabels(List<SequenceEmission>) - Method in class it.uniroma2.sag.kelp.data.example.SequencePath
setB(float) - Method in class it.uniroma2.sag.kelp.kernel.standard.PolynomialKernel
setBaseAlgorithm(LearningAlgorithm) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.RandomizedBudgetPerceptron
setBaseAlgorithm(LearningAlgorithm) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
setBaseAlgorithm(LearningAlgorithm) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationKernelBasedLearningAlgorithm
setBaseAlgorithm(LearningAlgorithm) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLinearLearningAlgorithm
setBaseAlgorithm(LearningAlgorithm) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.MultiLabelClassificationLearning
This method will set the type of the base algorithms to be learned.
setBaseAlgorithm(LearningAlgorithm) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsAllLearning
This method will set the type of the base algorithms to be learned.
setBaseAlgorithm(LearningAlgorithm) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsOneLearning
This method will set the type of the base algorithms to be learned.
setBaseAlgorithm(LearningAlgorithm) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.MetaLearningAlgorithm
setBaseAlgorithm(LearningAlgorithm) - Method in class it.uniroma2.sag.kelp.learningalgorithm.MultiEpochLearning
setBaseKernel(Kernel) - Method in class it.uniroma2.sag.kelp.kernel.KernelComposition
setBaseLearningAlgorithm(LearningAlgorithm) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
setBasePredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.SequenceModel
setBaseSimilarity(StructureElementSimilarityI) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.SameAdditionalInfoStructureElementSimilarity
Sets the base similarity applied when two structure elements have
the same additional infos
setBeamSize(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
setBeamSize(int) - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
setBias(float) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryModel
setBinaryClassifiers(Classifier[]) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassifier
setBinaryClassifiers(Classifier[]) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassifier
setBinaryClassifiers(Classifier[]) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassifier
setBudget(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
Sets the budget, i.e.
setC(double) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
setC(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
setC(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
setC(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
setC(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
setC(double) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
setCentroid(Vector) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansCluster
setChildren(ArrayList<TreeNode>) - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
Set the direct children of the target node
setClassificationLabels(HashSet<Label>) - Method in class it.uniroma2.sag.kelp.data.example.Example
setClassName(String) - Method in class it.uniroma2.sag.kelp.data.label.StringLabel
setCn(double) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setCn(double) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
setCn(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
setCn(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
setCn(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
setCn(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
setComparisonTypeLowerThanAbsoluteValue() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeLowerThanThreshold
setComparisonTypeLowerThanValue() - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeLowerThanThreshold
setContent(StructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.graph.GraphNode
Sets the content of this node
setContent(StructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.sequence.SequenceElement
Sets the content of this SequenceElement
setContent(StructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.TreeNode
setCp(double) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setCp(double) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
setCp(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
setCp(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
setCp(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
setCp(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.graph.DirectedGraphRepresentation
setDataFromText(String) - Method in interface it.uniroma2.sag.kelp.data.representation.Representation
Initializes a Representation using its textual description provided in
representationDescription
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.sequence.SequenceRepresentation
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.string.StringRepresentation
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.LexicalStructureElement
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.PosStructureElement
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.StructureElement
Initializes a StructureElement using its textual description provided in
structureElementDescription
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.SyntacticStructureElement
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.UntypedStructureElement
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.tree.TreeRepresentation
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
Set the values of the vectors according to the input text, which is expected to be
a sequence of numbers separated by a white space, or a comma, or a semicolon
setDataFromText(String) - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
setDcdLoss(DCDLoss) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setDefaultWeightValue(double) - Method in class it.uniroma2.sag.kelp.data.representation.tree.node.nodePruner.PruneNodeLowerThanThreshold
setDegree(float) - Method in class it.uniroma2.sag.kelp.kernel.standard.PolynomialKernel
setDeletingPolicy(BudgetedPassiveAggressiveClassification.DeletingPolicy) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
setDeltaMatrix(DeltaMatrix) - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
Deprecated.
setDeltaMatrix(DeltaMatrix) - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
Deprecated.
setDeltaMatrix(DeltaMatrix) - Method in class it.uniroma2.sag.kelp.kernel.tree.SubSetTreeKernel
Deprecated.
setDeltaMatrix(DeltaMatrix) - Method in class it.uniroma2.sag.kelp.kernel.tree.SubTreeKernel
Deprecated.
setDependencyRelation(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
setDist(Float) - Method in class it.uniroma2.sag.kelp.data.clustering.ClusterExample
setEmission(float) - Method in class it.uniroma2.sag.kelp.data.label.SequenceEmission
setEnrichmentName(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
setEnrichmentName(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.VectorBasedStructureElementSimilarity
Sets the identifier of the vectors associated to
a StructureElement during the manipulation operation performed
by a Manipulator (i.e.
setEpochs(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.MultiEpochLearning
setEps(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
setEpsilon(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.PassiveAggressiveRegression
Sets epsilon, i.e.
setEta(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
setExample(Example) - Method in class it.uniroma2.sag.kelp.data.clustering.ClusterExample
setExamples(Vector<ClusterExample>) - Method in class it.uniroma2.sag.kelp.data.clustering.Cluster
This function initialize the set of objects inside the cluster
setExamplesToStore(int) - Method in class it.uniroma2.sag.kelp.kernel.cache.DynamicIndexKernelCache
Deprecated.
Sets the maximum number of examples whose pairwise kernel computations
can be simultaneously stored
setExamplesToStore(int) - Method in class it.uniroma2.sag.kelp.kernel.cache.DynamicIndexSquaredNormCache
Sets the maximum number of norms that
can be simultaneously stored
setExamplesToStore(int) - Method in class it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache
Deprecated.
Sets the maximum number of examples whose pairwise kernel computations
can be simultaneously stored
setExamplesToStore(int) - Method in class it.uniroma2.sag.kelp.kernel.cache.FixSizeKernelCache
Sets the maximum number of examples whose pairwise kernel computations
can be simultaneously stored
setFairness(boolean) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setFairness(boolean) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
setFairness(boolean) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryCSvmClassification
setFairness(boolean) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
setFairness(boolean) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
setFairness(boolean) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
setFeatureValue(Object, float) - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
setFeatureValue(Object, float) - Method in interface it.uniroma2.sag.kelp.data.representation.Vector
Assigns value to the feature identified by featureIdentifier
setFeatureValue(String, float) - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
Sets the value of a feature
setFeatureValue(Object, float) - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
setFeatureValues(double[]) - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
Sets the feature values.
setFeatureValues(DenseMatrix64F) - Method in class it.uniroma2.sag.kelp.data.representation.vector.DenseVector
Sets the feature values.
setFirst(Vector) - Method in exception it.uniroma2.sag.kelp.data.representation.vector.exception.VectorOperationException
setGamma(float) - Method in class it.uniroma2.sag.kelp.kernel.standard.RbfKernel
setHead(LexicalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
setHyperplane(Vector) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryLinearModel
setIgnorePosInLemmaMatches(boolean) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.LexicalStructureElementSimilarity
Sets whether two lexical structure elements must provide a perfect match if their lemmas are the same,
regardless their part-of-speeches
setIgnorePosOnLexicals(boolean) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.ExactMatchingStructureElementSimilarity
Sets whether the part-of-speech must be ignored in comparing two
LexicalStructureElements
setIncludeLeaves(boolean) - Method in class it.uniroma2.sag.kelp.kernel.tree.SubSetTreeKernel
Sets whether the leaves must be involved in the kernel computation.
setIncludeLeaves(boolean) - Method in class it.uniroma2.sag.kelp.kernel.tree.SubTreeKernel
Sets whether the leaves must be involved in the kernel computation.
setInstance(Example) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.SupportVector
setIntraPairSimProduct(boolean) - Method in class it.uniroma2.sag.kelp.kernel.pairs.BestPairwiseAlignmentKernel
Sets whether adding or not to the kernel combination an extra term equivalent to the
multiplication of the intra-pair similarities, i.e.:
\(BK(x_1,x_2) \cdot BK(y_1,y_2)\)
setIntraPairSimProduct(boolean) - Method in class it.uniroma2.sag.kelp.kernel.pairs.PairwiseProductKernel
Sets whether adding or not to the kernel combination an extra term equivalent to the
multiplication of the intra-pair similarities, i.e.:
\(BK(x_1,x_2) \cdot BK(y_1,y_2)\)
setIntraPairSimProduct(boolean) - Method in class it.uniroma2.sag.kelp.kernel.pairs.PairwiseSumKernel
Sets whether adding or not to the kernel combination an extra term equivalent to the
multiplication of the intra-pair similarities, i.e.:
\(BK(x_1,x_2) \cdot BK(y_1,y_2)\)
setIntraPairSimProduct(boolean) - Method in class it.uniroma2.sag.kelp.kernel.pairs.UncrossedPairwiseProductKernel
Sets whether adding or not to the kernel combination an extra term equivalent to the
multiplication of the intra-pair similarities, i.e.:
\(BK(x_1,x_2) \cdot BK(y_1,y_2)\)
setIntraPairSimProduct(boolean) - Method in class it.uniroma2.sag.kelp.kernel.pairs.UncrossedPairwiseSumKernel
Sets whether adding or not to the kernel combination an extra term equivalent to the
multiplication of the intra-pair similarities, i.e.:
\(BK(x_1,x_2) \cdot BK(y_1,y_2)\)
setIterationNumber(int) - Method in class it.uniroma2.sag.kelp.data.manipulator.WLSubtreeMapper
Sets the maximum depth of the visits of the WL kernel
setIterations(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
Sets the number of iterations
setK(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
Sets the number of examples k that Pegasos exploits in its
mini-batch learning approach
setK(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
setK(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.VectorBasedStructureElementSimilarity
Sets the kernel to be used in comparing two vectors
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.RandomizedBudgetPerceptron
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationKernelBasedLearningAlgorithm
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryCSvmClassification
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryNuSvmClassification
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.KernelizedPassiveAggressiveClassification
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.KernelizedPerceptron
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
setKernel(Kernel) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.KernelMethod
Sets the kernel this
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.KernelizedPassiveAggressiveRegression
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
setKernel(Kernel) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
setKernel(Kernel) - Method in interface it.uniroma2.sag.kelp.predictionfunction.model.KernelMachineModel
setKernelCache(KernelCache) - Method in class it.uniroma2.sag.kelp.kernel.Kernel
Sets the cache in which storing the kernel operations in the RKHS defined
by this kernel
setKernelCache(KernelCache) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationKernelBasedLearningAlgorithm
setKernelValue(Example, Example, float) - Method in class it.uniroma2.sag.kelp.kernel.cache.DynamicIndexKernelCache
Deprecated.
setKernelValue(Example, Example, float) - Method in class it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache
Deprecated.
setKernelValue(Example, Example, float) - Method in class it.uniroma2.sag.kelp.kernel.cache.FixSizeKernelCache
setKernelValue(Example, Example, float) - Method in class it.uniroma2.sag.kelp.kernel.cache.KernelCache
Stores a kernel computation in cache
setKernelValue(Example, Example, float) - Method in class it.uniroma2.sag.kelp.kernel.cache.SimpleDynamicKernelCache
setKernelValue(Example, Example, float) - Method in class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
setLabel(String) - Method in class it.uniroma2.sag.kelp.data.clustering.Cluster
setLabel(Label) - Method in class it.uniroma2.sag.kelp.data.label.SequenceEmission
setLabel(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.UntypedStructureElement
setLabel(Label) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.BinaryLearningAlgorithm
setLabel(Label) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
setLabel(Label) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setLabel(Label) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
setLabel(Label) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
setLabel(Label) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
setLabel(Label) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
setLabel(Label) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
setLabel(Label) - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
setLabel(Label) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
setLabel(Label) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryClassifier
setLabels(Label[]) - Method in class it.uniroma2.sag.kelp.data.example.Example
Sets the example classificationLabels
setLabels(List<Label>) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.BinaryLearningAlgorithm
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.BudgetedLearningAlgorithm
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.MultiLabelClassificationLearning
Set the labels associated to this multi-classifier.
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsAllLearning
Set the labels associated to this multi-classifier.
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsOneLearning
Set the labels associated to this multi-classifier.
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
setLabels(List<Label>) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.LearningAlgorithm
Sets the labels representing the concept to be learned.
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.MultiEpochLearning
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
setLabels(Label...) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryClassifier
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassifier
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassifier
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassifier
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.MulticlassModel
setLabels(List<Label>) - Method in interface it.uniroma2.sag.kelp.predictionfunction.PredictionFunction
Sets the labels representing the concept to be predicted.
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateRegressionFunction
setLabels(List<Label>) - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
setLambda(float) - Method in class it.uniroma2.sag.kelp.kernel.sequence.SequenceKernel
setLambda(float) - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
setLambda(float) - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
setLambda(float) - Method in class it.uniroma2.sag.kelp.kernel.tree.SubSetTreeKernel
Set the decay factor
setLambda(float) - Method in class it.uniroma2.sag.kelp.kernel.tree.SubTreeKernel
Set the decay factor
setLambda(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
Sets the regularization coefficient
setLandmarks(List<Example>) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
setLemma(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.LexicalStructureElement
setLoss(PassiveAggressiveClassification.Loss) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.PassiveAggressiveClassification
setMargin(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
Sets the desired margin, i.e.
setMarkingPrefix(String) - Method in class it.uniroma2.sag.kelp.data.manipulator.TreePairRelTagger
Sets the prefix used to mark the related nodes
setMatrixPath(String) - Method in class it.uniroma2.sag.kelp.wordspace.Wordspace
Sets the path of the file where the word vectors are stored and loads
them.
setMaxEmissionCandidates(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
setMaxEmissionCandidates(int) - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
setMaximumDepthOfVisits(int) - Method in class it.uniroma2.sag.kelp.data.manipulator.TreeNodePruner
setMaxIterations(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setMaxIterations(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kernelbasedkmeans.KernelBasedKMeansEngine
setMaxIterations(int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
setMaxNumberOfRows(int) - Method in class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
setMaxSubseqLeng(int) - Method in class it.uniroma2.sag.kelp.kernel.sequence.SequenceKernel
setMaxSubseqLeng(int) - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
setMaxSubseqLeng(int) - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
setModel(Model) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryKernelMachineClassifier
setModel(Model) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.BinaryLinearClassifier
setModel(Model) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.MultiLabelClassifier
setModel(Model) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsAllClassifier
setModel(Model) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassifier
setModel(Model) - Method in interface it.uniroma2.sag.kelp.predictionfunction.PredictionFunction
Sets the model
setModel(Model) - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateKernelMachineRegressionFunction
setModel(Model) - Method in class it.uniroma2.sag.kelp.predictionfunction.regressionfunction.UnivariateLinearRegressionFunction
setModel(Model) - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePredictionFunction
setModels(List<BinaryModel>) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.MulticlassModel
setModifier(LexicalStructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.CompositionalStructureElement
setMu(float) - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
setMu(float) - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
setNegativeLabelsForClassifier(Label[]) - Method in class it.uniroma2.sag.kelp.predictionfunction.classifier.multiclass.OneVsOneClassifier
Set the negative label classifier array
setNext(SequenceElement) - Method in class it.uniroma2.sag.kelp.data.representation.sequence.SequenceElement
Sets the previous element in the sequence
setNodeSimilarity(StructureElementSimilarityI) - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
setNu(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryNuSvmClassification
setNu(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.OneClassSvmClassification
setNumberOfColumns(int) - Method in class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
setObj(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
setP(double) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
setPaths(List<SequencePath>) - Method in class it.uniroma2.sag.kelp.predictionfunction.SequencePrediction
setPolicy(PassiveAggressive.Policy) - Method in class it.uniroma2.sag.kelp.learningalgorithm.PassiveAggressive
setPos(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.LexicalStructureElement
setPos(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.PosStructureElement
setPosRestriction(boolean) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.RandomizedBudgetPerceptron
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryCSvmClassification
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.BinaryNuSvmClassification
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.MultiLabelClassificationLearning
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsAllLearning
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.multiclassification.OneVsOneLearning
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.BudgetedPassiveAggressiveClassification
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.KernelizedPassiveAggressiveClassification
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.LinearPassiveAggressiveClassification
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.KernelizedPerceptron
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.LinearPerceptron
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
setPredictionFunction(PredictionFunction) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.LearningAlgorithm
Sets the predictionFunction learned during the training process.
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.MultiEpochLearning
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.KernelizedPassiveAggressiveRegression
setPredictionFunction(PredictionFunction) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.LinearPassiveAggressiveRegression
setpReg(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
setPrevious(SequenceElement) - Method in class it.uniroma2.sag.kelp.data.representation.sequence.SequenceElement
Sets the previous element in the sequence
setProjectionMatrix(List<Double>) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
setProperty(Label) - Method in class it.uniroma2.sag.kelp.data.label.NumericLabel
setRank(int) - Method in class it.uniroma2.sag.kelp.linearization.nystrom.NystromMethod
setRegressionValues(ArrayList<NumericLabel>) - Method in class it.uniroma2.sag.kelp.data.example.Example
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.kernel.DirectKernel
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLinearLearningAlgorithm
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.LibLinearLearningAlgorithm
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.passiveaggressive.LinearPassiveAggressiveClassification
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.pegasos.PegasosLearningAlgorithm
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.LinearPerceptron
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
setRepresentation(String) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.LinearMethod
Sets the representation this learning algorithm will exploit
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.liblinear.LibLinearRegression
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.passiveaggressive.LinearPassiveAggressiveRegression
setRepresentation(String) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryLinearModel
setRepresentationName(String) - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorLinear
setRepresentationName(String) - Method in class it.uniroma2.sag.kelp.learningalgorithm.clustering.kmeans.LinearKMeansEngine
setRepresentations(HashMap<String, Representation>) - Method in class it.uniroma2.sag.kelp.data.example.Example
Sets the example representations
setRepresentations(HashMap<String, Representation>) - Method in class it.uniroma2.sag.kelp.data.example.SimpleExample
setRepresentationToBeEnriched(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.dilation.CompositionalNodeSimilarityDilation
setRepresentationToBeEnriched(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.product.CompositionalNodeSimilarityProduct
setRepresentationToBeEnriched(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.sum.CompositionalNodeSimilaritySum
setRho(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
setScore(Double) - Method in class it.uniroma2.sag.kelp.data.example.SequencePath
setScwType(SCWType) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
setSecond(Vector) - Method in exception it.uniroma2.sag.kelp.data.representation.vector.exception.VectorOperationException
setSeed(long) - Method in interface it.uniroma2.sag.kelp.data.dataset.Dataset
Sets the seed of the random generator used to shuffling examples and getting random examples
setSeed(long) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
setSeed(long) - Method in class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.RandomizedBudgetPerceptron
Sets the seed for the random generator adopted to select the support vector to delete
setSeed(long) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setSelectionAllExamples() - Method in class it.uniroma2.sag.kelp.data.representation.tree.utils.SelectRepresentationFromExample
setSelectionToLeftExampleInPairOnly() - Method in class it.uniroma2.sag.kelp.data.representation.tree.utils.SelectRepresentationFromExample
setSelectionToRightExampleInPairOnly() - Method in class it.uniroma2.sag.kelp.data.representation.tree.utils.SelectRepresentationFromExample
setSequenceExampleGenerator(SequenceExampleGenerator) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.hmm.SequenceClassificationLearningAlgorithm
setSequenceExampleGenerator(SequenceExampleGenerator) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.SequenceModel
setSimilarityThreshold(float) - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
setSize(int) - Method in class it.uniroma2.sag.kelp.kernel.cache.FixIndexSquaredNormCache
Sets the size of the cache, i.e.
setSquaredNormCache(SquaredNormCache) - Method in class it.uniroma2.sag.kelp.kernel.Kernel
Sets the cache in which storing the squared norms in the RKHS defined
by this kernel
setSquaredNormValue(Example, float) - Method in class it.uniroma2.sag.kelp.kernel.cache.DynamicIndexSquaredNormCache
setSquaredNormValue(Example, float) - Method in class it.uniroma2.sag.kelp.kernel.cache.FixIndexSquaredNormCache
setSquaredNormValue(Example, float) - Method in interface it.uniroma2.sag.kelp.kernel.cache.SquaredNormCache
Stores a squared norm in the cache
setSupportVector(SupportVector, int) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
Substitutes the support vector in position position
with
sv
setSupportVectors(List<SupportVector>) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
setSyntacticRelation(String) - Method in class it.uniroma2.sag.kelp.data.representation.structure.SyntacticStructureElement
setSyntacticRestriction(boolean) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
setTerminalFactor(float) - Method in class it.uniroma2.sag.kelp.kernel.tree.PartialTreeKernel
setTerminalFactor(float) - Method in class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
setToCombine(List<Kernel>) - Method in class it.uniroma2.sag.kelp.kernel.KernelCombination
setToCombine(List<LearningAlgorithm>) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.EnsembleLearningAlgorithm
setTransitionRepresentationName(String) - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorKernel
setTransitionsOrder(int) - Method in class it.uniroma2.sag.kelp.data.examplegenerator.SequenceExampleGeneratorKernel
setUnbiased(boolean) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.perceptron.Perceptron
Sets whether the bias, i.e.
setUpper_bound_n(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
Set the \(C_n\) value
setUpper_bound_p(float) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
Set the \(C_p\) value
setUseBias(boolean) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.dcd.DCDLearningAlgorithm
setValue(float) - Method in class it.uniroma2.sag.kelp.data.label.NumericLabel
setValue(double) - Method in interface it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.LibLinearFeature
setValue(double) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.LibLinearFeatureNode
setVector(TIntFloatMap) - Method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
setVisitTypePostOrder() - Method in class it.uniroma2.sag.kelp.data.manipulator.TreeNodePruner
setVisitTypePreOrder() - Method in class it.uniroma2.sag.kelp.data.manipulator.TreeNodePruner
setWeight(float) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.SupportVector
setWeights(List<Float>) - Method in class it.uniroma2.sag.kelp.kernel.standard.LinearKernelCombination
setWordCounter(int) - Static method in class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
setWordspace(WordspaceI) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.VectorBasedStructureElementSimilarity
Sets the wordspace from which the vectors associated to a word must be retrieved
ShortestPathKernel - Class in it.uniroma2.sag.kelp.kernel.graph
Implementation of the Shortest Path Kernel for Graphs
Reference paper:
[1] K.
ShortestPathKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.graph.ShortestPathKernel
ShortestPathKernel(String) - Constructor for class it.uniroma2.sag.kelp.kernel.graph.ShortestPathKernel
shrinkingIteration - Static variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
Number of iterations to be accomplished before shrinking
shuffleExamples(Random) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
Shuffles the examples in the dataset
sim(StructureElement, StructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.compositional.CompositionalNodeSimilarity
This method computes the similarity between two compositional nodes by
applying the "sum" operator.
sim(StructureElement, StructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.ExactMatchingStructureElementSimilarity
sim(StructureElement, StructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.LexicalStructureElementSimilarity
sim(StructureElement, StructureElement) - Method in class it.uniroma2.sag.kelp.data.representation.structure.similarity.SameAdditionalInfoStructureElementSimilarity
sim(StructureElement, StructureElement) - Method in interface it.uniroma2.sag.kelp.data.representation.structure.similarity.StructureElementSimilarityI
This function measure the similarity between structure elements
SimpleDataset - Class in it.uniroma2.sag.kelp.data.dataset
A SimpleDataset that represent a whole dataset in memory.
SimpleDataset() - Constructor for class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
Initializes an empty dataset
SimpleDynamicKernelCache - Class in it.uniroma2.sag.kelp.kernel.cache
Cache for kernel computations.
SimpleDynamicKernelCache() - Constructor for class it.uniroma2.sag.kelp.kernel.cache.SimpleDynamicKernelCache
SimpleExample - Class in it.uniroma2.sag.kelp.data.example
An Example
composed by a set of Representation
s.
SimpleExample() - Constructor for class it.uniroma2.sag.kelp.data.example.SimpleExample
Initializes an empty example (0 labels and 0 representations)
SimpleExample(Label[], HashMap<String, Representation>) - Constructor for class it.uniroma2.sag.kelp.data.example.SimpleExample
Initializes a SimpleExample with the input representations and labels
size() - Method in class it.uniroma2.sag.kelp.data.clustering.Cluster
This functions returns the number of objects inside the cluster
sizeI - Variable in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.L2R_L2_SvcFunction
skipExample() - Method in class it.uniroma2.sag.kelp.data.dataset.DatasetReader
Skip an example: this function is useful when an example cannot be read
SmoothedPartialTreeKernel - Class in it.uniroma2.sag.kelp.kernel.tree
Partial Tree Kernel implementation.
SmoothedPartialTreeKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
SmoothedPartialTreeKernel(float, float, float, float, StructureElementSimilarityI, String) - Constructor for class it.uniroma2.sag.kelp.kernel.tree.SmoothedPartialTreeKernel
SoftConfidenceWeightedClassification - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.scw
Implements Exact Soft Confidence-Weighted (SCW) algorithms, an on-line
learning algorithm for binary classification.
SoftConfidenceWeightedClassification() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
SoftConfidenceWeightedClassification(SCWType, float, float, float, String) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
SoftConfidenceWeightedClassification(Label, SCWType, float, float, float, boolean, String) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.scw.SoftConfidenceWeightedClassification
softmax(float, float) - Static method in class it.uniroma2.sag.kelp.utils.Math
Approximates the max of two values with the following formula:
\(softmax(a,b) = \frac{log(e^{Fa} + e^{Fb})}{F}\)
solve(int, Dataset, float[], int[], float[]) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
It solves the SMO algorithm in [CC Chang & CJ Lin, 2011]
min 0.5(\alpha^T Q \alpha) + p^T \alpha
y^T \alpha = \delta
y_i = +1 or -1
0 <= alpha_i <= Cp for y_i = 1
0 <= alpha_i <= Cn for y_i = -1
Given:
Q, p, y, Cp, Cn, and an initial feasible point \alpha l is the size of
vectors and matrices eps is the stopping tolerance
solution will be put in \alpha, objective value will be put in obj
sortAscendingOrder() - Method in class it.uniroma2.sag.kelp.data.clustering.Cluster
sortDescendingOrder() - Method in class it.uniroma2.sag.kelp.data.clustering.Cluster
SparseVector - Class in it.uniroma2.sag.kelp.data.representation.vector
Sparse Feature Vector.
SparseVector() - Constructor for class it.uniroma2.sag.kelp.data.representation.vector.SparseVector
split(float) - Method in class it.uniroma2.sag.kelp.data.dataset.SequenceDataset
split(float) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
Returns two datasets created by splitting this dataset accordingly to
percentage
.
splitClassDistributionInvariant(float) - Method in class it.uniroma2.sag.kelp.data.dataset.SequenceDataset
splitClassDistributionInvariant(float) - Method in class it.uniroma2.sag.kelp.data.dataset.SimpleDataset
Returns two datasets created by splitting this dataset accordingly to
percentage
.
squaredNorm(Example) - Method in class it.uniroma2.sag.kelp.kernel.Kernel
Returns the squared norm of the given example in the RKHS defined by this kernel
squaredNorm(Example) - Method in class it.uniroma2.sag.kelp.kernel.standard.NormalizationKernel
SquaredNormCache - Interface in it.uniroma2.sag.kelp.kernel.cache
Cache for store squared norms
SquaredNormCacheTypeResolver - Class in it.uniroma2.sag.kelp.kernel.cache
It is a class implementing TypeIdResolver
which will be used by Jackson library during
the serialization in JSON and deserialization of SquaredNormCache
s
SquaredNormCacheTypeResolver() - Constructor for class it.uniroma2.sag.kelp.kernel.cache.SquaredNormCacheTypeResolver
squaredNormOfTheDifference(Example, Example) - Method in class it.uniroma2.sag.kelp.kernel.Kernel
Returns the squared norm of the difference between the given examples in the RKHS.
StandardizationManipulator - Class in it.uniroma2.sag.kelp.data.manipulator
It standardizes the feature values of a vectorial representation.
StandardizationManipulator(String, List<Example>) - Constructor for class it.uniroma2.sag.kelp.data.manipulator.StandardizationManipulator
Constructor
standardize(Vector) - Method in class it.uniroma2.sag.kelp.data.manipulator.StandardizationManipulator
It standardizes the feature values of vector
.
StaticDeltaMatrix - Class in it.uniroma2.sag.kelp.kernel.tree.deltamatrix
StaticDeltaMatrix() - Constructor for class it.uniroma2.sag.kelp.kernel.tree.deltamatrix.StaticDeltaMatrix
StaticDeltaMatrix(int) - Constructor for class it.uniroma2.sag.kelp.kernel.tree.deltamatrix.StaticDeltaMatrix
Stoptron - Class in it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm
It is a variation of the Stoptron proposed in
Stoptron() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
Stoptron(int, OnlineLearningAlgorithm, Label) - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.budgetedAlgorithm.Stoptron
StringLabel - Class in it.uniroma2.sag.kelp.data.label
It is a label consisting of an String value.
StringLabel(String) - Constructor for class it.uniroma2.sag.kelp.data.label.StringLabel
Initializes a label to a specific String value
StringLabel() - Constructor for class it.uniroma2.sag.kelp.data.label.StringLabel
StringRepresentation - Class in it.uniroma2.sag.kelp.data.representation.string
String representation.
StringRepresentation() - Constructor for class it.uniroma2.sag.kelp.data.representation.string.StringRepresentation
Empty constructor necessary for making RepresentationFactory
support this implementation.
StringRepresentation(String) - Constructor for class it.uniroma2.sag.kelp.data.representation.string.StringRepresentation
Initializing constructor.
StripeKernelCache - Class in it.uniroma2.sag.kelp.kernel.cache
Given a dataset, this cache stores kernel computations in "Stripes", i.e.
StripeKernelCache(Dataset) - Constructor for class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
StripeKernelCache(Dataset, int) - Constructor for class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
StripeKernelCache(int, int) - Constructor for class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
StripeKernelCache() - Constructor for class it.uniroma2.sag.kelp.kernel.cache.StripeKernelCache
StructureElement - Class in it.uniroma2.sag.kelp.data.representation.structure
This class represent the atomic element of a discrete structure.
StructureElement() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.StructureElement
StructureElementFactory - Class in it.uniroma2.sag.kelp.data.representation.structure
This class implement a Factory Design pattern to instantiate
StructureElement
given a string representing it.
StructureElementFilter - Interface in it.uniroma2.sag.kelp.data.representation.structure.filter
This interface provides methods for selecting structureElements accordingly to a
policy specified by the classes implementing this interface
StructureElementSimilarityI - Interface in it.uniroma2.sag.kelp.data.representation.structure.similarity
This interface is used to implement similarity functions between Structured
Element
StructureElementSimilarityTypeResolver - Class in it.uniroma2.sag.kelp.data.representation.structure.similarity
It is a class implementing TypeIdResolver
which will be used by
Jackson library during the serialization in JSON and deserialization of
classes implementing StructureElementSimilarityI
, that are used
to estimate a similarity function between StructuredElement
s
StructureElementSimilarityTypeResolver() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.similarity.StructureElementSimilarityTypeResolver
SubSetTreeKernel - Class in it.uniroma2.sag.kelp.kernel.tree
A SubSetTree Kernel is a convolution kernel that evaluates the tree fragments
shared between two trees.
SubSetTreeKernel(float, String) - Constructor for class it.uniroma2.sag.kelp.kernel.tree.SubSetTreeKernel
SubTree Kernel
SubSetTreeKernel(String) - Constructor for class it.uniroma2.sag.kelp.kernel.tree.SubSetTreeKernel
SubTree Kernel constructor.
SubSetTreeKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.tree.SubSetTreeKernel
SubTree Kernel: default constructor.
substituteSupportVector(int, Example, float) - Method in class it.uniroma2.sag.kelp.predictionfunction.model.BinaryKernelMachineModel
SubTreeKernel - Class in it.uniroma2.sag.kelp.kernel.tree
SubTree Kernel implementation.
SubTreeKernel(float, String) - Constructor for class it.uniroma2.sag.kelp.kernel.tree.SubTreeKernel
SubTree Kernel
SubTreeKernel(String) - Constructor for class it.uniroma2.sag.kelp.kernel.tree.SubTreeKernel
SubTree Kernel constructor.
SubTreeKernel() - Constructor for class it.uniroma2.sag.kelp.kernel.tree.SubTreeKernel
SubTree Kernel: default constructor.
subXTv(double[], double[]) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.liblinear.solver.L2R_L2_SvcFunction
SupportVector - Class in it.uniroma2.sag.kelp.predictionfunction.model
It is a support vector for kernel methods consisting of an example and the associated weight
SupportVector(float, Example) - Constructor for class it.uniroma2.sag.kelp.predictionfunction.model.SupportVector
SupportVector() - Constructor for class it.uniroma2.sag.kelp.predictionfunction.model.SupportVector
SvmSolution - Class in it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver
It is the instance of a solution provided the LIBSVM solver of the SMO
optimization problem.
SvmSolution() - Constructor for class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.SvmSolution
swap(LibSvmSolver.AlphaStatus[], int, int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
swap(Example[], int, int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
swap(float[], int, int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
swap(int[], int, int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
swap_index(int, int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.classification.libsvm.solver.LibSvmSolver
Swap the info of two examples
swap_index(int, int) - Method in class it.uniroma2.sag.kelp.learningalgorithm.regression.libsvm.EpsilonSvmRegression
SyntacticStructureElement - Class in it.uniroma2.sag.kelp.data.representation.structure
It represent a StuctureElement that contains the syntactic informations, i.e.
SyntacticStructureElement() - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.SyntacticStructureElement
SyntacticStructureElement(String) - Constructor for class it.uniroma2.sag.kelp.data.representation.structure.SyntacticStructureElement