public abstract class PassiveAggressiveRegression extends PassiveAggressive implements RegressionLearningAlgorithm
[CrammerJLMR2006] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz and Yoram Singer Online Passive-Aggressive Algorithms. Journal of Machine Learning Research (2006)
PassiveAggressive.Policy
Modifier and Type | Field and Description |
---|---|
protected float |
epsilon |
protected UnivariateRegressionFunction |
regressor |
c, label, policy
Constructor and Description |
---|
PassiveAggressiveRegression() |
Modifier and Type | Method and Description |
---|---|
float |
getEpsilon()
Returns epsilon, i.e.
|
UnivariateRegressionFunction |
getPredictionFunction()
Returns the regressor learned during the training process
|
void |
learn(Dataset dataset)
It starts the training process exploiting the provided
dataset |
UnivariateRegressionOutput |
learn(Example example)
Applies the learning process on a single example, updating its current model
|
void |
setEpsilon(float epsilon)
Sets epsilon, i.e.
|
computeWeight, getC, getLabel, getLabels, getPolicy, reset, setC, setLabel, setLabels, setPolicy
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
duplicate, getLabels, reset, setLabels, setPredictionFunction
protected UnivariateRegressionFunction regressor
protected float epsilon
public float getEpsilon()
public void setEpsilon(float epsilon)
epsilon
- the epsilon to setpublic UnivariateRegressionFunction getPredictionFunction()
RegressionLearningAlgorithm
getPredictionFunction
in interface LearningAlgorithm
getPredictionFunction
in interface RegressionLearningAlgorithm
public void learn(Dataset dataset)
LearningAlgorithm
dataset
learn
in interface LearningAlgorithm
learn
in class PassiveAggressive
dataset
- the training datapublic UnivariateRegressionOutput learn(Example example)
OnlineLearningAlgorithm
learn
in interface OnlineLearningAlgorithm
example
- the instance to be exploited in the learning processexample
before the updating stepCopyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.