Constructor and Description |
---|
PairSimilarityExtractor(String similarityVectorName,
Kernel... kernel) |
Modifier and Type | Method and Description |
---|---|
Kernel |
VectorBasedStructureElementSimilarity.getKernel()
Returns the kernel used in comparing two vectors
|
Modifier and Type | Method and Description |
---|---|
void |
VectorBasedStructureElementSimilarity.setKernel(Kernel kernel)
Sets the kernel to be used in comparing two vectors
|
Modifier and Type | Method and Description |
---|---|
static Kernel |
QuestionClassification.getQCKernelFunction(SimpleDataset trainingSet,
SimpleDataset testSet,
String kernelId)
Get one of the kernel functions used in the Question Classification
examples.
|
Modifier and Type | Class and Description |
---|---|
class |
DirectKernel<T extends Representation>
It is a kernel that operates exploiting directly on a specific
representation.
|
class |
KernelCombination
It is a kernel that operates combining other kernels
|
class |
KernelComposition
It is a kernel that operates enriching the computation performed by another kernel
|
Modifier and Type | Field and Description |
---|---|
protected Kernel |
KernelComposition.baseKernel |
Modifier and Type | Field and Description |
---|---|
protected List<Kernel> |
KernelCombination.toCombine |
Modifier and Type | Method and Description |
---|---|
Kernel |
KernelComposition.getBaseKernel()
Returns the kernel this kernel is enriching
|
static Kernel |
Kernel.load(String inputFilePath)
Load a kernel function from a file path.
|
Modifier and Type | Method and Description |
---|---|
List<Kernel> |
KernelCombination.getToCombine()
Returns a list of the kernels this kernel is combining
|
Modifier and Type | Method and Description |
---|---|
static void |
Kernel.save(Kernel kernel,
String outputFilePath)
Save the input kernel in a file.
|
void |
KernelComposition.setBaseKernel(Kernel baseKernel) |
Modifier and Type | Method and Description |
---|---|
void |
KernelCombination.setToCombine(List<Kernel> toCombine) |
Modifier and Type | Class and Description |
---|---|
class |
ShortestPathKernel
Implementation of the Shortest Path Kernel for Graphs
Reference paper:
[1] K.
|
Modifier and Type | Class and Description |
---|---|
class |
BestPairwiseAlignmentKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = softmax(BK(x_1, y_1) \cdot BK(x_2, y_2) , BK(x_1, y_2) \cdot BK(x_2, y_1))\) |
class |
KernelOnPairs
It is a kernel operating on ExamplePairs applying a simpler kernel to the pair elements
|
class |
PairwiseProductKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) \cdot BK(x_2, y_2) + BK(x_1, y_2) \cdot BK(x_2, y_1)\) where BK is another kernel the kernel on pairs relies on. |
class |
PairwiseSumKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2) + BK(x_1, y_2) + BK(x_2, y_1)\) where BK is another kernel the kernel on pairs relies on. |
class |
PreferenceKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2) - BK(x_1, y_2) - BK(x_2, y_1)\) where BK is another kernel the preference kernel relies on. |
class |
UncrossedPairwiseProductKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) \cdot BK(x_2, y_2)\) where BK is another kernel the kernel on pairs relies on. |
class |
UncrossedPairwiseSumKernel
It is a kernel operating on ExamplePairs applying the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2)\) where BK is another kernel the kernel on pairs relies on. |
Constructor and Description |
---|
BestPairwiseAlignmentKernel(Kernel baseKernel,
boolean intraPairSimProduct)
Defines a Kernel operating on pairs that applies the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = softmax(BK(x_1, y_1) \cdot BK(x_2, y_2) , BK(x_1, y_2) \cdot BK(x_2, y_1))\) |
PairwiseProductKernel(Kernel baseKernel,
boolean intraPairSimProduct)
Defines a Kernel operating on pairs that applies the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) \cdot BK(x_2, y_2) + BK(x_1, y_2) \cdot BK(x_2, y_1)\) |
PairwiseSumKernel(Kernel baseKernel,
boolean intraPairSimProduct)
Defines a Kernel operating on pairs that applies the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2) + BK(x_1, y_2) + BK(x_2, y_1)\) |
PreferenceKernel(Kernel baseKernel) |
UncrossedPairwiseProductKernel(Kernel baseKernel,
boolean intraPairSimProduct)
Defines a Kernel operating on pairs that applies the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) \cdot BK(x_2, y_2)\) |
UncrossedPairwiseSumKernel(Kernel baseKernel,
boolean intraPairSimProduct)
Defines a Kernel operating on pairs that applies the following formula:
\(K( < x_1, x_2 >, < y_1,y_2 > ) = BK(x_1, y_1) + BK(x_2, y_2)\) |
Modifier and Type | Class and Description |
---|---|
class |
SequenceKernel
Sequence Kernel implementation.
|
Modifier and Type | Class and Description |
---|---|
class |
KernelMultiplication
Multiplication of Kernels
Given the kernels \(K_1 \ldots K_n\), the combination formula is: \(\prod_{i}K_i\) |
class |
LinearKernelCombination
Weighted Linear Combination of Kernels
Given the kernels \(K_1 \ldots K_n\), with weights \(c_1 \ldots c_n\), the combination formula is: \(\sum_{i}c_iK_i\) |
class |
NormalizationKernel
Normalization of a generic kernel K
Normalization formula: \(K(x,y) = \frac{K(x,y)}{\sqrt{(K(x,x) \cdot K(y,y))}}\)
|
class |
PolynomialKernel |
class |
RbfKernel
Radial Basis Function Kernel.
|
Modifier and Type | Method and Description |
---|---|
void |
LinearKernelCombination.addKernel(float weight,
Kernel kernel)
Adds a kernel with a corresponding weight to the linear combination of kernels
|
Constructor and Description |
---|
NormalizationKernel(Kernel kernelToNormalize) |
PolynomialKernel(float degree,
float a,
float b,
Kernel inputSpace) |
PolynomialKernel(float degree,
Kernel inputSpace) |
RbfKernel(float gamma,
Kernel inputSpace) |
Modifier and Type | Class and Description |
---|---|
class |
PartialTreeKernel
Partial Tree Kernel implementation.
|
class |
SmoothedPartialTreeKernel
Partial Tree Kernel implementation.
|
class |
SubSetTreeKernel
A SubSetTree Kernel is a convolution kernel that evaluates the tree fragments
shared between two trees.
|
class |
SubTreeKernel
SubTree Kernel implementation.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearKernel
Linear Kernel for
Vector s It executes the dot product between two Vector representations |
Modifier and Type | Method and Description |
---|---|
Kernel |
KernelMethod.getKernel()
Returns the kernel exploited by this learner
|
Modifier and Type | Method and Description |
---|---|
void |
KernelMethod.setKernel(Kernel kernel)
Sets the kernel this
|
Modifier and Type | Method and Description |
---|---|
Kernel |
Stoptron.getKernel() |
Kernel |
RandomizedBudgetPerceptron.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
Stoptron.setKernel(Kernel kernel) |
void |
RandomizedBudgetPerceptron.setKernel(Kernel kernel) |
Modifier and Type | Method and Description |
---|---|
Kernel |
SequenceClassificationKernelBasedLearningAlgorithm.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
SequenceClassificationKernelBasedLearningAlgorithm.setKernel(Kernel kernel) |
Modifier and Type | Method and Description |
---|---|
void |
BinaryNuSvmClassification.setKernel(Kernel kernel) |
void |
BinaryCSvmClassification.setKernel(Kernel kernel) |
Constructor and Description |
---|
BinaryCSvmClassification(Kernel kernel,
Label label,
float cp,
float cn) |
BinaryCSvmClassification(Kernel kernel,
Label label,
float cp,
float cn,
boolean useFairness) |
BinaryNuSvmClassification(Kernel kernel,
Label label,
float nu) |
OneClassSvmClassification(Kernel kernel,
Label label,
float nu) |
Modifier and Type | Field and Description |
---|---|
protected Kernel |
LibSvmSolver.kernel
The Kernel function between examples, i.e.
|
Modifier and Type | Method and Description |
---|---|
Kernel |
LibSvmSolver.getKernel() |
Constructor and Description |
---|
LibCSvmSolver(Kernel kernel,
float cp,
float cn) |
LibNuSvmSolver(Kernel kernel,
int cp,
int cn) |
LibSvmSolver(Kernel kernel,
float Cp,
float Cn) |
Modifier and Type | Method and Description |
---|---|
Kernel |
KernelizedPassiveAggressiveClassification.getKernel() |
Kernel |
BudgetedPassiveAggressiveClassification.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
KernelizedPassiveAggressiveClassification.setKernel(Kernel kernel) |
void |
BudgetedPassiveAggressiveClassification.setKernel(Kernel kernel) |
Constructor and Description |
---|
BudgetedPassiveAggressiveClassification(int budget,
Kernel kernel,
float c,
boolean fairness,
BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy,
Label label) |
BudgetedPassiveAggressiveClassification(int budget,
Kernel kernel,
float cp,
float cn,
BudgetedPassiveAggressiveClassification.DeletingPolicy deletingPolicy,
Label label) |
KernelizedPassiveAggressiveClassification(float cp,
float cn,
PassiveAggressiveClassification.Loss loss,
PassiveAggressive.Policy policy,
Kernel kernel,
Label label) |
Modifier and Type | Method and Description |
---|---|
Kernel |
KernelizedPerceptron.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
KernelizedPerceptron.setKernel(Kernel kernel) |
Constructor and Description |
---|
KernelizedPerceptron(float alpha,
float margin,
boolean unbiased,
Kernel kernel,
Label label) |
Modifier and Type | Method and Description |
---|---|
Kernel |
KernelBasedKMeansEngine.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
KernelBasedKMeansEngine.setKernel(Kernel kernel) |
Constructor and Description |
---|
KernelBasedKMeansEngine(Kernel kernel,
int k,
int maxIterations) |
Modifier and Type | Method and Description |
---|---|
void |
EpsilonSvmRegression.setKernel(Kernel kernel) |
Constructor and Description |
---|
EpsilonSvmRegression(Kernel kernel,
Label label,
float c,
float pReg) |
Modifier and Type | Method and Description |
---|---|
Kernel |
KernelizedPassiveAggressiveRegression.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
KernelizedPassiveAggressiveRegression.setKernel(Kernel kernel) |
Constructor and Description |
---|
KernelizedPassiveAggressiveRegression(float aggressiveness,
float epsilon,
PassiveAggressive.Policy policy,
Kernel kernel,
Label label) |
Modifier and Type | Method and Description |
---|---|
Kernel |
NystromMethod.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
NystromMethod.setKernel(Kernel kernel) |
Constructor and Description |
---|
NystromMethod(List<Example> landmarks,
Kernel kernel)
Constructor of NystromMethod.
|
NystromMethod(List<Example> landmarks,
Kernel kernel,
int expectedRank) |
NystromMethodEnsemble(List<List<Example>> listOflandmarks,
Kernel kernel) |
Modifier and Type | Method and Description |
---|---|
Kernel |
KernelMachineModel.getKernel() |
Kernel |
BinaryKernelMachineModel.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
KernelMachineModel.setKernel(Kernel kernel) |
void |
BinaryKernelMachineModel.setKernel(Kernel kernel) |
Constructor and Description |
---|
BinaryKernelMachineModel(Kernel kernel) |
Copyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.